Matrix Workshop Hints and Solutions

(1) **Warm-up** (Skip this one if you feel comfortable with the basic definitions and computations.)

Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation whose standard matrix is $A = \begin{bmatrix} \frac{5}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{5}{2} \end{bmatrix}$. (a) Is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathcal{E}}$ an eigenvector for T? What about $\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\mathcal{E}}$?

- (b) How would you find all the eigenvectors for T?
- (c) What does the following equation tell you about T?

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{5}{2} \end{bmatrix}$$

(For example, how does this equation identify the eigenvectors for T? The eigenvalues? What does T do to \mathbb{R}^2 ?)

(2) A taste of things to come

Suppose $S : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation whose standard matrix is $B = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$.

- (a) Without doing any calculation, how can you tell 0 is an eigenvalue for S?
- (b) Now suppose you are given the factorisation

$\begin{bmatrix} 1 \end{bmatrix}$	1]	[1	0]	$\begin{bmatrix} \frac{1}{2} \end{bmatrix}$	$\frac{1}{2}$	_	$\left[\frac{1}{2} \right]$	$\frac{1}{2}$
1	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	0	0	$\frac{1}{2}$	$\frac{-1}{2}$	=	$\frac{1}{2}$	$\frac{1}{2}$

In words, compare S to T (from problem 1). What do they have in common? What is different about these linear transformations?

- (c) For several choices of $\mathbf{v} \in \mathbb{R}^2$, draw \mathbf{v} and $T(\mathbf{v})$ on the same plane. Can you give a description in words of what T does to a vector in \mathbb{R}^2 ?
- (d) Compare S to the linear transformation whose standard matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.
- (e) (A challenge!) Let $\mathbf{a} = \begin{bmatrix} 2\\1 \end{bmatrix}$. Can you find a matrix Q with the property that $Q[\mathbf{x}]_{\mathcal{E}} = [\operatorname{proj}_{\mathbf{a}}\mathbf{x}]_{\mathcal{E}}$? What does this have to do with the other parts of this question?

(3) Some other examples

We know that eigenvectors corresponding to distinct eigenvalues are linearly independent. This question explores what happens when we have eigenvalues with multiplicity greater than one.

- (a)
- (b) Suppose $R : \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation whose standard matrix is $C = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$. Show that C is not diagonalisable.
- (c) Suppose $Q : \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation whose standard matrix is $D = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

Show that D is not diagonalisable.

(d) Can you find a matrix E whose characteristic equation is

$$0 = (2 - \lambda)^3$$

such that E is diagonalisable? (Don't work too hard!) Compare your matrix to D.

(e) Try to rephrase each of the parts above as a statement about the dimension of some eigenspace.