Overview

Before the break, we began to study eigenvectors and eigenvalues, introducing the characteristic equation as a tool for finding the eigenvalues of a matrix:

$$
\operatorname{det}(A-\lambda I)=0
$$

The roots of the characteristic equation are the eigenvalues of λ.
We also discussed the notion of similarity: the matrices A and B are similar if $A=P B P^{-1}$ for some invertible matrix P.

Question

When is a matrix A similar to a diagonal matrix?

From Lay, §5.3

Quick review

Definition

An eigenvector of an $n \times n$ matrix A is a non-zero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ. The scalar λ is an eigenvalue for A.

To find the eigenvalues of a matrix, find the solutions of the characteristic equation:

$$
\operatorname{det}(A-\lambda I)=\mathbf{0} .
$$

The λ-eigenspace is the set of all eigenvectors for the eigenvalue λ, together with the zero vector. The λ-eigenspace E_{λ} is $\operatorname{Nul}(A-\lambda I)$.

The advantages of a diagonal matrix

Given a diagonal matrix, it's easy to answer the following questions:
(1) What are the eigenvalues of D ? The dimensions of each eigenspace?
(2) What is the determinant of D ?
(3) Is D invertible?
(1) What is the characteristic polynomial of D ?
(0) What is D^{k} for $k=1,2,3, \ldots$?

For example, let $D=\left[\begin{array}{ccc}10^{50} & 0 & 0 \\ 0 & \pi & 0 \\ 0 & 0 & -2.7\end{array}\right]$.
Can you answer each of the questions above?

The diagonalisation theorem

The goal in this section is to develop a useful factorisation $A=P D P^{-1}$, for an $n \times n$ matrix A. This factorisation has several advantages:

- it makes transparent the geometric action of the associated linear transformation, and
- it permits easy calculation of A^{k} for large values of k :

Example 1

Let $D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -1\end{array}\right]$.
Then the transformation T_{D} scales the three standard basis vectors by $2,-4$, and -1 , respectively.

$$
D^{7}=\left[\begin{array}{ccc}
2^{7} & 0 & 0 \\
0 & (-4)^{7} & 0 \\
0 & 0 & (-1)^{7}
\end{array}\right]
$$

Example 2

Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$. We will use similarity to find a formula for A^{k}. Suppose we're given $A=P D P^{-1}$ where $P=\left[\begin{array}{cc}1 & 3 \\ 1 & -2\end{array}\right]$ and $D=\left[\begin{array}{cc}4 & 0 \\ 0 & -1\end{array}\right]$

We have

$$
\begin{aligned}
A & =P D P^{-1} \\
A^{2} & =P D P^{-1} P D P^{-1} \\
& =P D^{2} P^{-1} \\
A^{3} & =P D^{2} P^{-1} P D P^{-1} \\
& =P D^{3} P^{-1} \\
\vdots & \vdots \\
A^{k} & =P D^{k} P^{-1}
\end{aligned}
$$

So

$$
\begin{aligned}
A^{k} & =\left[\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
4^{k} & 0 \\
0 & (-1)^{k}
\end{array}\right]\left[\begin{array}{cc}
2 / 5 & 3 / 5 \\
1 / 5 & -1 / 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{2}{5} 4^{k}+\frac{3}{5}(-1)^{k} & \frac{3}{5} 4^{k}-\frac{3}{5}(-1)^{k} \\
\frac{2}{5} 4^{k}-\frac{2}{5}(-1)^{k} & \frac{3}{5} 4^{k}+\frac{2}{5}(-1)^{k}
\end{array}\right]
\end{aligned}
$$

Diagonalisable Matrices

Definition

An $n \times n$ (square) matrix is diagonalisable if there is a diagonal matrix D such that A is similar to D.

That is, A is diagonalisable if there is an invertible $n \times n$ matrix P such that $P^{-1} A P=D$ (or equivalently $A=P D P^{-1}$).

Question

How can we tell when A is diagonalisable?

The answer lies in examining the eigenvalues and eigenvectors of A.

Recall that in Example 2 we had

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right], D=\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right] \text { and } P=\left[\begin{array}{cc}
1 & 3 \\
1 & -2
\end{array}\right] \text { and } A=P D P^{-1} .
$$

Note that

$$
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=4\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
A\left[\begin{array}{c}
3 \\
-2
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right]=-1\left[\begin{array}{c}
3 \\
-2
\end{array}\right] .
$$

We see that each column of the matrix P is an eigenvector of $A \ldots$
This means that we can view P as a change of basis matrix from eigenvector coordinates to standard coordinates!

In general, if $A P=P D$, then

$$
A\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] .
$$

If $\left[\begin{array}{llll}\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}\end{array}\right]$ is invertible, then A is the same as

$$
\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{n}
\end{array}\right]^{-1} .
$$

