Overview

Last time we introduced the notion of an orthonormal basis for a subspace.
We also saw that if a square matrix U has orthonormal columns, then U is
invertible and U~ = UT. Such a matrix is called an orthogonal matrix.

At the beginning of the course we developed a formula for computing the
projection of one vector onto another in R? or R3. Today we'll generalise
this notion to higher dimensions.

From Lay, §6.3
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Review
Recall from Stewart that if u # 0 and y are vectors in R”, then

. yu L
proj,y = Eu is the orthogonal projection of y onto u. J

woa

(Lay uses the notation “ § " for this projection, where u is understood.)

How would you describe the vector proj,y in words?
One possible answer:

y can be written as the sum of a vector parallel to u and a vector
orthogonal to u; proj,y is the summand parallel to u.
Or alternatively,
y can be written as the sum of a vector in the line spanned by u
and a vector orthogonal to u; proj,y is the summand in Span{u}.
We'd like to generalise this, replacing Span{u} by an arbitrary subspace:

Given y and a subspace W in R”, we'd like to write y as a sum of a vector

in W and a vector in W
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Example 1

Suppose that {uy, up,u3} is an orthogonal basis for R® and let
W = Span {uy,uz}. Write y as the sum of a vector § in W and a vector z
in W+,
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Recall that for any orthogonal basis, we have

y-ux y-u2 y-us
uj; + uz + us.
ur-ug uz-uz usz-us

It follows that
y-u u y-uz

1
ui-ug uz-uz

y= uz

and

‘u
y-us u

uz-us

Since us is orthogonal to u; and uy, its scalar multiples are orthogonal to
Span{uy,uy}. Therefore z € W+t

All this can be generalised to any vector y and subspace W of R”, as we
will see next.
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The Orthogonal Decomposition Theorem

Theorem

Let W be a subspace in R". Then each'y € R" can be written uniquely in
the form

y=y+z (1)
where § € W and z € W,
If {u1,...,up} is any orthogonal basis of W, then

R -u -u
y:y 1u1+~~-+y Lu, (2)
ujp-up Up-up

The vector y is called the orthogonal projection of y onto W .

y

Note that it follows from this theorem that to calculate the decomposition
y =¥+ z, it is enough to know one orthogonal basis for W explicitly. Any
orthogonal basis will do, and all orthogonal bases will give the same
decomposition y =y + z.
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Example 2
Given
1 1 0
u; = L upy = 0 uz = -1
1= 0 , U2 — 1 , Uz = 1
-1 1 —1
let W be the subspace of R* spanned by {ug,u,u3}.
2
. -3 :
Write y = IR the sum of a vector in W and a vector orthogonal to
1

w.
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The orthogonal projection of y onto W is given by
‘u ‘u ‘u
. y-u u y-u2 u y-us u

y = 1 2 3
ui-ug uz-uz uz-us
1 1 0
_ =201 70| 6|1
3|0 3(1] 3|1
-1 1 -1
5
~1|-8
T 313
3
Also
2 5 1
Jv_0 — -3 _1 -8 _1 -1
YTY T o4 73|13 T3
1 3 0
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Thus the desired decomposition of y is
y = y+z
2 5 1
-3 1 -8 1—1
41 — 3|13 3 (-1
1 3 0

The Orthogonal Decomposition Theorem ensures that z =y — y is in W=
However, verifying this is a good check against computational mistakes.

This problem was made easier by the fact that {uy,uz, us} is an
orthogonal basis for W. If you were given an arbitrary basis for W instead
of an orthogonal basis, what would you do?
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Theorem (The Best Approximation Theorem)

Let W be a subspace of R", y any vector in R", and y the orthogonal
projection of y onto W. Then y is the closest vector in W toy, in the
sense that

lly =9Il <lly = vll (3)
for allv in W, v #y.
y
Sy - vl
Iy - yll %
N
0 el
Iy -vll v
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Proof

Let v be any vector in W, v #y. Then y —v € W. By the Orthogonal
Decomposition Theorem, y — ¥ is orthogonal to W. In particulary — y is
orthogonal to § — v. Since

the Pythagorean Theorem gives

ly =vl?=lly =91 + I3 —v[|*.

Hence [ly — v||* > [ly — §||*. m
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We can now define the distance from a vector y to a subspace W of R".

Definition
Let W be a subspace of R” and let y be a vector in R". The distance
from y to W is

lly =9Il

where y is the orthogonal projection of y onto W.
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Example 3
Consider the vectors
3 1 —4
! u -2 u 1
y 1| _11'"= | o
13 2 3

Find the closest vector to y in W = Span {uy,uz}.

ui-ug uz-us
1 [—4] [—1]
_ 30 |-2| 26|1|_|-5
10 |1 260 |[-3
2 | 3] | 9 |
(3] [-1] m
e the di RV PSITH Rl N i NTIRTH d TR

e =1 @
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Theorem

If {u1,uz, ..., uy} is an orthonormal basis for a subspace W of R", then
for all y in R" we have

projyyy = (y-ur)ug + (y-u2)uz + - - + (y-up)up.

This theorem is an easy consequence of the usual projection formula:

y-'u: yu
u+--+->""u
ui-up Up-up

y=

When each u; is a unit vector, the denominators are all equal to 1.

Theorem
If{ui,uo, ..., u,} is an orthonormal basis for W and
U= [ul u ... up], then for all'y in R" we have

projyy = UUTy. (4)

The proof is a matrix calculation; see the posted slides for details.
A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 13 / 24

Note that if U is a n X p matrix with orthonormal columns, then we have
UTU = I, (see Lay, Theorem 6 in Chapter 6). Thus we have

UTUx = Ipx = x for every x in RP

UUTy = projyy for every y in R”, where W = Col U.

Note: Pay attention to the sizes of the matrices involved here. Since U is
nx p we have that U is p x n. Thus UT U is a p x p matrix, while UUT
is an n X n matrix.
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The previous theorem shows that the function which sends x to its
orthogonal projection onto W is a linear transformation. The kernel of this
transformation is ...

...the set of all vectors orthogonal to W, i.e., w-.
The range is W itself.

The theorem also gives us a convenient way to find the closest vector to x
in W: find an orthonormal basis for W and let U be the matrix whose
columns are these basis vectors. Then mutitply x by UUT.
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Examples

Example 4
2 -2 4
Let W =Span¢ [1],] 2 and let x = [8|. What is the closest
2 1 1
vector to x in W?
2/3 -2/3
Setu; = [1/3| ,ux = 2/3 |,
2/3 1/3
2/3 -2/3
u=11/3 2/3
2/3 1/3
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10

Ty _
We check that U' U = {0 1

}, so U has orthonormal columns.

The closest vector is

1 8 -2 2| |4 2
projyyx = UUTx = 9 -2 5 4] (8| = |4
2 4 5] |1 5
We can also compute distance from x to W:
4 2 2
[x —projwx|[ = [| (8] — |4 [I=1| 4 |[I=6.
1 5 —4
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Because this example is about vectors in R3, so we could also use cross
products:

2] [-2 i ok
Ix|2|=|2 1 2/=-3i-6j+6k=n
2 1 2 21

gives a vector orthogonal to W, so the distance is the length of the
projection of x onto n:

4 -1/3
8| -2/3| = -6,
1 2/3
and the closest vector is
4 -1/3 2
8| +6|—-2/3| = |4
1 2/3 5

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 18 / 24




This example showed that the standard matrix for projection to

2 -2 8 -2 2
W = Span 11, 2 is% -2 5 4]
2 1 2 4 5
2 -2 -1
If we instead work with B = 11,121,]|-2 coordinates, what is
2 1 2

the orthogonal projection matrix?

Observe that the three basis vectors were chosen very carefully: by and by
span W, and bjs is orthogonal to W. Thus each of the basis vectors is an
eigenvector for the linear transformation. (Why?)

The linear transformation is represented by a diagonal matrix when it's
1 00

written in terms of an eigenbasis. Thus we get the matrix (0 1 0].
0 00

What does this tell you about orthogonal projection matrices in general?
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Example 5

1 1

0 4

1o |Zq] are orthogonal and span a subspace W of R*. Find a vector

0 -1

orthogonal to W.

Normalize the columns and set

V2 1/2
u_| o 12
T2 —1)2
0 -1/2
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Then the standard matrix for the orthogonal projection is has matrix

31 1 -1
171 1 -1 -1

T _ —
uur = 411 -1 3 1
-1 -1 1 1
3
Thus, choosing a vector v = (2) not in W, the closest vector to v in W is
1
given by
3 5
2 112
T e
uu ol 211
1 -2
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3 5 1
2 2 2
. T, _ 1 _ 1 e 1
In particular, v— UU"'v = ol 211721 lies in W-.
1 -2 4
1 1 1
0 1 .4
Thus |21l |2 e orthogonal in R*, and span a subspace W; of
0 -1 4
dimension 3.
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But now we can repeat the process with Wj! This time take

1/vV2 172 1/V22

y_| © 12 2/y22
TNV —1/2 —1/v22
0 —1/2 4/y22
35 15 9 -3
1115 19 -15 5
T—i
uu 4419 -—-15 35 3
-3 5 3 43
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0 3
. 0 T -5
Taking x = 0 (la—UU")x =1/44 3 and then
1 1
1 1 1 3
(1) , _11 , _21 , ::55 is an orthogonal basis for R*. O
0 -1 4 1
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