HAVE YOU TRIED SWIFTKEY? | SFRCERAR INSERTS ITs BEST GUESS, | T GUESS TRAUSINYOORMOST | | T

ITS GOT THE FIRST DECENT | ey 1 7 e Evier” s | VLY FIRST WORD, THEN FE |
Ineonct Voo T seov.| QFEIE e Bl A | e | | ]| |

\ .
IT (EPRNS FROM YOUR 5M5/ | “THE EMPIRE STRIKES BACK. SO IT BUILDS VP YOR
EMAIL ARCHIVES WHAT WORDS ( WHAT IFYOU MPSH SPACE "TPICAL" SENTENCE.

YOU USE TOGETHER MOST OFTEN. IN A BLANK MESSAGE? (00U LETS SEE YOURS!




How can we gmerate dod predichonsT
L?Jf'ﬁ Use a Markov Cﬁnam mw@(f

SpEde . @

We  can Prck fho Pm(%éf s 53 [OO[Q"?j a- g Corpu S, il Wc"éffafmj
fe (e equency aﬂ codamn  lete pars.

For €><ﬂ”7/o(€, above  ceve Qe o A—A  bansiton
}ombaL.‘thj as O00  lLecavse A s rafle Mﬁ(f?%?@r/-\

%[\0’ e Use A"? am' i 306?4”, M” Pra/u@ a 27,/27
ﬁbé[f\a§47t W’LY/K




ln a  move aafmf:@d{ mw@[, fe posg;é/e shorkes c#ﬂ@

ﬁagfLé’m rgg@rﬁ /ﬂ\e (a{’L ﬁua 6[1 amcﬂlf-’/s =2

g %
ngg, *Le Wﬂé/‘%ﬂ) p}@{%éi]flvj Qaw\ AA 1z 42 /S

[/)lﬂ[’), hocaue tn a ﬂf’jﬁffw{ E/ﬁ/lSA 1%’)\/1[ t’é\
ou we Mo lefes AN ifs becruse gure z/éav/mj

e wod AARDVARK,

Aﬁam, A CaN P)@&qb(fé, A S’LUCQWHTC, M@')Lﬂ)( ,%/f\ a erpuUs.
(f(\ﬁ pm[cﬂ{o;l,-hﬁ gg AE —=CD il M(deg - 2¢0  Swce Q#C.>




The best description of Markov chains I've ever read is in chapter 15 of Programming
Pearls: |

A generator can make more interesting text by making each letter a random
function of its predecessor. We could, therefore, read a sample text and count how
many times every letter follows an A, how many times they follow a B, and so on for
each letter of the alphabet. When we write the random text, we produce the next
letter as a random function of the current letter. The Order-1 text was made by
exactly this scheme:

t | amy, vin. id wht omanly heay atuss n macon aresethe hired boutwhe t,
tl, ad torurest t plur | wit hengamind tarer-plarody thishand.

We can extend this idea to longer sequences of letters. The order-2 text was made
by generating each letter as a function of the two letters preceding it (a letter pair is
often called a digram). The digram TH, for instance, is often followed in English by
the vowels A E, I, O, U and Y, less frequently by R and W, and rarely by other letters.

Ther | the heingoind of-pleat, blur it dwere wing waske hat trooss. Yout lar
on wassing, an sit."” "Yould,” "I that vide was nots ther.

The order-3 text is built by choosing the next letter as a function of the three
previous letters (a trigram).

| has them the saw the secorrow. And wintails on my my ent, thinks, fore
voyager lanated the been elsed helder was of him a very free
bottlemarkable,

By the time we get to the order-4 text, most words are English, and you might not
be surprised to learn that it was generated from a Sherlock Holmes story ( “The
Adventure of Abbey Grange").

His heard." "Exactly he very glad trouble, and by Hopkins! That it on of the
who difficentralia. He rushed likely?" "Blood night that.

Bom o/ Soq. codnghorror-com/markov-and-gou



random
class Markov(object):

def __init__ (self, open_file):
self.cache = {}
self.open_file = open_file
self.words self.file_to_words()
self.word_size len(self.words)
self.database()

def file_to_words(self):
self.open_file.seek(0)
data = self.open_file.read()
words = data.split()
words

def triples(self):

len({self.words) 3:

i range(len(self.words) 2):
(self.words[i], self.words[i+1], self.words[i+2])

def database(self):
wl, w2, w3 self.triples():
key = (wl, w2)
key self.cache:
self.cache[key].append(w3)

;EIf.cachE[key] [w3]

def generate_markov_text(self, size=25):

seed random.randint(®, self.word_size-3)
seed_word, next_word - self.words[seed], self.words[seed+1]
wl, w2 = seed_word, next_word
gen_words = []

i xrange(size):

gen_words.append(wl)

wl, w2 = w2, random.choice(self.cachel[(wl, w2)])
gen_words.append(w2)

' '.join(gen_words)



CMAMac1:Lecture24 scott$ python

Python 2.7.10 (default, Aug 28 2015, 07:26:38)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on ¢
Type "help", "copyright", "credits" or "license" for more i
>>> import markovgen

>>> markov = markovgen.Markov(open(’harry-potter.txt’))

>>> markov.generate_markov_text (100)

think outside of the field. Chris suddenly whacked a
Bludger in the end of our date, when I was able to

play Aqua Nero. It deals damage, divided however I

like the Slytherin stands, though it was the fact that

he was sure Ron didnt say anything, he had extremely

loose rainbow suspenders, and over to the one he had
beaten just Voldemort, but with its rather dull ring

and not get much worse. "Meow..." came a very good

point," said Dumbledore, zipping up his chair at the

hand was not a wizard head on out and let her go..." Harry



Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active

networks, the simulation of Lamport clocks might never have
~ occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smallialk
that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
roted that Rooter runs in Q(oglogn) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML., we surmount this issue
without synthesizing distributed archetypes.

We question the need for digital-to-analog converters. It
should be noted that we allow DHCP to hamess homoge-
neous epistemologies without the cvaluation of evolutionary
programming [2], [12], [14]. Contrarily, the lookaside buffer
might not be the panacea that end-users expected. However,
this method is never considered confusing. Our approach
turns the knowledge-base communication sledgehammer into
a scalpel.

Our focus in our research is not on whether symmetric
encryption and expert systems are largely incompatible, but
rather on proposing new flexible symmetries {Rooter). Indeed,
active networks and virtual machines have a long history of
collaborating in this manner. The basic tenet of this solution
is the refinement of Scheme. The disadvantage of this type
of approach, however, is that public-private key pair and red-
black trees are rarely incompatible. The usual methods for the
visualization of RPCs do not apply in this area. Therefore, we
sce no reason not to use electronic modalities to measure the
improvement of hierarchical databascs.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10} is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
£(n -+ logn)) time [22]. In the end, we conclude.

I1. ARCHITECTURE

Our research is principled. Consider the early methodology
by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [13] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.

We consider an algorithm consisting of n semaphores.
Any unproven synthesis of introspective methodologies will
clearly require that the well-known reliable algorithm for the
investigation of randomized algorithms by Zheng is in Co-NP;
our application is no different. The question is, will Rooter
satisfy all of these assumptions? No.

Reality aside, we would like to deploy a methodology for
how Rooter might behave in theory. Furthermore, consider
the carly architecture by Sato; our methodology is similar,
but will actually achieve this goal. despite the results by Ken
Thompson, we can disconfirm that expert systems can be made
amphibious, highly-available, and linear-time. See our prior
technical report [9] for details.

II1. IMPLEMENTATION

Our implementation of our approach is low-energy,
Bayesian, and introspective. Further, the 91 C files contains
about 8969 lines of SmallTalk. Rooter requires root access
in order to locate mobile communication. Despite the fact
that we have not yet optimized for complexity, this should be
simple once we finish designing the server daemon. Overall,



(\8 ", Pd Hcﬁ (Dﬁ a”@iom GQ a f Cak h "Lf’,\fﬁlq}
, (B Py mpdgey T

\Mb

60061§; Pa%’_ Qan
4 o bs  rankmg algo-hm wes boed

An ea//U versien
on  Markor hams.
Conde n Mobe dan s o sl Bk bl poge
Tho 5 anstheon /oméﬂLf'{iJ?'ff ae  quen [’j mf;/am/j «ﬂ()}/d/t/ﬂﬂj
4 lwk on (e curent page. |
Adihon a”b‘ flos  a ”6{4/%'/76 Lk A2 095
Y 4z il ,oméaré,‘/rla A nshend of Q//Ow;ﬂj @ Ik
e \urp o a W/Ht’g randor page.

Te ”Pﬂg& Eynlz\) Cﬁd Py 8 fe ﬁﬂﬁéﬁ"‘ %4@ fme. G"ﬂeb“ﬁ’“")
that  m Ml Morhoy  chan s/fn/g A P pay.




M‘S umLa ’ﬂ»g, §4acéwa§7€‘c nmgﬁfag /V’, dﬂﬁ( //L
I’h—n - MX/Q-

From h 0(656’/’/0 hon above, e have
% (—xm) - (1-d) + Z@_@_@,

= dea;

where - 0(13 IS /ﬂ% ﬂwmk/ap fm/é)-Sde“M )& [ /Oagﬁz \S'
&(]eﬁi (< /"6 ﬂ%ﬂla( V)W’Jéfya@r 0179 /,,,é; o pige ;

' -
A
73 ‘,’m

e C@wf&' {rﬁ Jo Comfwla /ﬂ& frggn/eméﬁ Qr l\/] SCe
[, km«/ ’Wfé @/fl%é: hes ﬁe_ /@Mj yun ove  fle
optnes éﬂ fhe Lﬁfﬁm'@@ﬁm/ wi% 6/3!(/4 value 1

ooV @ f,[)
(,,\ pﬂc’%(ﬁ HLS QCKSIQ/% ;\\/5"7L C@W/oq%f M( ’ jf]




Nohice s o lnks . [’)fﬂl\ fdmj?mj pags pirhe v il /%3, Ronk il
o[mkg paﬂ’\ W\aﬂj Fa—?gg Ma/ée 50(// )Dagz &mé j@ C(/O‘




ISDN SYSTEMS

WILCOXE 0 TG GATHERNG PLLCE Computer Networks and ISDN Systems 30 (1998) 107-117

The anatomy of a large-scale hypertextual Web search engine !

Sergey Brin 2, Lawrence Page *

Computer Science Department, Stanford University, Stunford, CA 94305, USA

Abstract

In this paper. we present Google, a prototype of a large-scale search engine which makes heavy use of the structure
present in hypertext. Google is designed to craw! and index the Web efficiently and produce much more satisfying search
results than existing systems. The prototype with a full text and hyperlink database of at least 24 million pages is available
at http://google stanford.edu/

To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of Web pages
involving a comparable number of distinct terms. They answer tens of millions of queries every day. Despite the importance
of large-scale search engines on the Web, very little academic research has been done on them. Furthermore, due to rapid
advance in technology and Web proliferation, creating a Web search engine today is very different from three years
ago. This paper provides an in-depth description of our large-scale Web search engine — the first such detailed public
description we know of to date.

Apart from the problems of scaling traditional search techniques to data of this magnitude, there are new technical
challenges involved with using the additional information present in hypertext to produce better search results. This paper
addresses this question of how to build a practical large-scale system which can exploit the additional information present
in hypertext. Also we look at the problem of how to effectively deal with uncontrolled hypertext collections where anyone
can publish anything they want. © 1998 Published by Elsevier Science B.V. All rights reserved.

Kevwords: World Wide Web; Search engines; Information retrieval; PageRank: Google

1. Introduction likely to surf the Web using its link graph, often start-
ing with high quality human maintained indices such

The Web creates new challenges for information as Yahoo!* or with search engines. Human main-
refrieval. The amount of information on the Web is tained lists cover popular topics effectively but are
growing rapidly, as well as the number of new users subjective, expensive to build and maintain, slow to
inexperienced in the art of Web research. People are improve, and cannot cover all esoteric topics. Auto-

mated search engines that rely on keyword matching
usually retumn too many low quality matches. To make

Comesponding author. matters worse, some advertisers attempt to gain peo-

¥ There are two versions of this paper — a longer fuil version

and a shorter printed version. The full version is available on the ple $ attention by takmg measures meant to mislead
Web and 1he conference CD-ROM. -
2 E-mail: |sergey, page} @cs.stanford.edu * http:/fwww.yahoo.com/

0169-7552/98/319.00 © 1998 Published by Elsevier Science B.V. All rights reserved,
PIFSO169-7552(98)00110-X



Clam Py mer mibise B has g glnf]w/af e a@@wfm%m
A-U 2V

(,J\n% (/( 5 an < ow//ﬁﬂaﬁow;/ nom[ﬂ/\/ |

> & an mw Z(raﬂavu)’ Aty
M”\ mh-—ﬂéga«/we 917747?5 m ﬂgﬂ?aéwj Ovaéﬁ

\/ 5 gn NV OY/ﬂlo‘gUna( mm[ru(_
(a0 )] e Rz )

17 \/
A
don: NP= VI U =VITZVT S VI

\QU@ can Q!(dgmﬁ)lgg ATA;PDP_’} Alor \/—'IP' j;./{S: &W{M cav
sl 4= Ol




g)(dmglé B -03¢ -055 OF%

:

[ 2 3) ('@5’7 -092\[6.5 O O)W
23 %) -0 ,7@0
-
7}76 Pwl"j 3 pZ 51470},.
U\M Acﬂaﬂng e rﬁw&fe N(?

(0¢7> (6.5'3 (-—d?ﬁ -055 (27@

0.%2

7 %

N J’l' 50 Emf.



msp= Image [data = ImageDatal]

ColorConvert [Import[FileNameJoin[{NotebookDirectory[], "monarch.gif"}11],
"Grayscale"]][[All, all1, 1]]

Cratlasite

nj4sy- ByteCount [data]
Outfae}= 1 828 952

may= {u, W, v} = SingularValueDecomposition[data];

mnpzp= ByteCount [{u, w, v}]
ouzl- 5870608

w43}~ Image [u.w.Conjugate[Transpose{v]]]

Outjad)=




2 | SvD-compression.nb

mzsl- {u, w, v} = SingularValueDecomposition{data, 100];

nso}= ByteCount{u, w, v}]

oujast- 865320

mi30j- Image [u.w.Conjugate [Transpose[v]]]

3=

war = {u, w, v} = SingularValueDecomposition[data, 10];

mjagi= ByteCount|{u, w, v}}]
oupagl= 81 120

3z} - Image[u.w.Conjugate [Transpose[v]]]

Oulf32f=




SvD-compression.nb | 3

masp= {u, W, v} = SingularvValueDecomposition[data, 1];

mias;= ByteCount [ {u, w, v}]
Ouizsl B616

mzai= Image [u.w.Conjugate [Transposefv]]]

Outfad)=




