Distance workshop

(1) Find the distance from a point P_{0} to a line L.
(a) Describe L using a direction vector \mathbf{v} and a specific point P_{1} on L.
(b) Let P_{2} be the point on L closest to P_{0}.
(c) Let $\mathbf{r}_{\mathbf{0}}$ be the vector from the origin to P_{0}.
(d) Let \mathbf{r}_{1} be the vector from the origin to P_{1}.
(e) Label the picture.

(f) Use trigonometric identities to describe relationships between as many lengths as you can.
(g) Solve for the distance from P_{0} to L.
(2) Find the distance from the point $P_{0}=(1,1,-1)$ to the line L of intersection between the planes

$$
x+y+z=1, \quad 2 x-y-5 z=1
$$

(a) Explain why the direction vector of L is $\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}$, where $\mathbf{n}_{1}=\mathbf{i}+\mathbf{j}+\mathbf{k}$, and $\mathbf{n}_{2}=2 \mathbf{i}-\mathbf{j}-5 \mathbf{k}$.
(b) Find \mathbf{v}.
(c) Pick $P_{1}=\left(1, \frac{-1}{4}, \frac{1}{4}\right)$ on the line. How far is P_{1} from the closes point to P_{0} on L ?
(d) What is the distance from P_{0} to each of the two planes?
(3) If L_{1} and L_{2} are parallel lines which don't intersect, find the distance between them.

Hint: pick an arbitrary point on each line and connect them by a vector. How does the distance relate to this vector? Draw a picture!

