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Assessment

Midsemester exam (date TBA) (25%)
Final exam (45%)
Web Assign quizzes (10%)
Tutorial quizzes (10%)
Tutorial participation (5%)
Written assignment (5%)

Tips for success:
Ask questions!
Make use of the available resources!
Don’t fall behind!
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Linear Algebra

We will be covering most of the material in Stewart, Sections 10.1,
10.2, 10.3 and 10.4, and Lay Chapters 4 and 5, and Chapter 6,
Sections 1 - 6.
Vectors in R2 and R3, dot products, cross products in R3, planes and
lines in R3 (Stewart).
Properties of Vector Spaces and Subspaces.
Linear Independence, bases and dimension, change of basis.
Applications to difference equations, Markov chains.
Eigenvalues and eigenvectors.
Orthogonality, Gram-Schmidt process. Least squares problem.
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Coordinates, Vectors and Geometry in R3

From Stewart, §10.1, §10.2

Question: How do we describe 3-dimensional space?
1 Coordinates
2 Lines, planes, and spheres in R3

3 Vectors
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Euclidean Space and Coordinate Systems

We identify points in the plane (R2) and in three-dimensional space (R3)
using coordinates.

R3 = {(x , y , z) : x , y , z ∈ R}
reads as “R3 is the set of ordered triples of real numbers".

We first choose a fixed point O = (0, 0, 0), called the origin, and three
directed lines through O that are perpendicular to each other. We call
these the coordinate axes and label them the x -axis, the y -axis and the
z-axis.
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Usually we think of the x - and y -axes as being horizontal and the z-axis as
being vertical.
Together, {x , y , z} form a right-handed coordinate system.

O

x y

z

Compare this to the axes we use to describe R2, where the x -axis is
horizontal and the y -axis is vertical.
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The Distance Formula

Definition
The distance | P1P2 | between the points P1 = (x1, y1) and P2 = (x2, y2) is

| P1P2 |=
√

(x2 − x1)2 + (y2 − y1)2

Definition
The distance | P1P2 | between the points P1 = (x1, y1, z1) and
P2 = (x2, y2, z2) is

| P1P2 |=
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
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1.1 Surfaces in R3

Lines, planes, and spheres are special sets of points in R3 which can be
described using coordinates.

Example 1
The sphere of radius r with centre C = (c1, c2, c3) is the set of all points
in R3 with distance r from C :

S = {P : |PC | = r}.

Equivalently, the sphere consists of all the solutions to this equation:

(x − c1)2 + (y − c2)2 + (z − c3)2 = r2.
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Example 2
The equation z = −5 in R3 represents the set {(x , y , z) | z = −5}, which
is the set of all points whose z-coordinate is −5. This is a horizontal plane
that is parallel to the xy -plane and five units below it.

x

y

z

-5
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Example 3
What does the pair of equations y = 3, z = 5 represent? In other words,
describe the set of points

{(x , y , z) : y = 3 and z = 5} = {(x , 3, 5)}.
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Connections with linear equations

Recall from 1013 that a system of linear equations defines a solution set.
When we think about the unknowns as coordinate variables, we can ask
what the solution set looks like.

A single linear equation with 3 unknowns will usually have a solution
set that’s a plane. (e.g., Example 2 or 3x + 2y − 5z = 1)
Two linear equations with 3 unknowns will usually have a solution set
that’s a line. (e.g., Example 3 or 3x + 2y − 5z = 1 and x + z = 2)
Three linear equations with 3 unknowns will usually have a solution
set that’s a point (i.e., a unique solution).

Question
When do these heuristic guidelines fail?
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Vectors

We’ll study vectors both as formal mathematical objects and as tools for
modelling the physical world.

Definition
A vector is an object that has both magnitude and direction.

Physical quantities such as velocity, force, momentum, torque,
electromagnetic field strength are all “vector quantities” in that to specify
them requires both a magnitude and a direction.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 12 / 27



Vectors

Definition
A vector is an object that has both magnitude and direction.

A

B

v

We represent vectors in R2 or R3 by arrows. For example, the vector v has
initial point A and terminal point B and we write v = ~AB.
The zero vector 0 has length zero (and no direction).
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Since a vector doesn’t have “location" as one of its properties, we can
slide the arrow around as long as we don’t rotate or stretch it.

v

v (1,2)

(-2,1)

(-1,3)

We can describe a vector using the coordinates of its head when its tail is
at the origin, and we call these the components of the vector. Thus in this

example v =
[
1
2

]
and we say the components of v are 1 and 2.
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Vector Addition

If an arrow representing v is placed with its tail at the head of an arrow
representing u, then an arrow from the tail of u to the head of v
represents the sum u + v.

u
v

u + v

u

v
u + v

Suppose that u has components a and b and that v has components x
and y . Then u + v has components a + x and b + y :

u + v = 〈a, b〉+ 〈x , y〉 = 〈a + x , b + y〉,A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 15 / 27



Scalar Multiplication

If v is a vector, and t is a real number (scalar), then the scalar multiple of
v is a vector with magnitude |t| times that of v, and direction the same as
v if t > 0, or opposite to that of v if t < 0.

If t = 0, then tv is the zero vector 0.
If u has components a and b, then tv has components tx and ty :

tv = t〈x , y〉 = 〈tx , ty〉.
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Example

Example 4
A river flows north at 1km/hr, and a swimmer moves at 2km/hr relative to
the water.

At what angle to the bank must the swimmer move to swim east
across the river?
What is the speed of the swimmer relative to the land?

There are several velocities to be considered:
The velocity of the river, F, with ‖F‖ = 1;
The velocity of the swimmer relative to the water, S, so that ‖S‖ = 2;
The resultant velocity of the swimmer, F + S, which is to be perpendicular
to F.
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The problem is to determine the direction of S and the magnitude of
F + S.

F
S

F + S

length = 1

length = 2

π/2

From the figure it follows that the angle between S and F must be 2π/3
and the resulting speed will be

√
3 km/hour.
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Standard basis vectors in R2

The vector i has components 1 and 0, and the vector j has components 0
and 1.

i =
[
1
0

]
and j =

[
0
1

]
.

The vector r from the origin to the point (x , y) has components x and y
and can be expressed in the form

r =
[
x
y

]
= x i + y j.

The length of of a vector v =
[
x
y

]
is given by

‖v‖ =
√

x2 + y2
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Standard basis vectors in R3

In the Cartesian coordinate system in 3-space we define three standard
basis vectors i, j and k represented by arrows from the origin to the points
(1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively:

i =



1
0
0


 , j =



0
1
0


 , k =



0
0
1


 .

Any vector can be written as a sum of scalar multiples of the standard
basis vectors: 


a
b
c


 = a i + b j + c k.
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If v =




a
b
c


, the length of v is defined as

‖v‖ =
√

a2 + b2 + c2 .

This is just the distance from the origin (with coordinates 0, 0, 0) of the
point with coordinates a, b, c.
A vector with length 1 is called a unit vector.

If v is not zero, then v
‖v‖ is the unit vector in the same direction as v.

The zero vector is not given a direction.
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Vectors and Shapes
Example 5
The midpoints of the four sides of any quadrilateral are the vertices of a
parallelogram.

A

B
C

D

E

F

G

H

Can you prove this using vectors?

Hint: how can you tell if two vectors are parallel? How can you tell if they
have the same length?
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Example 6
A boat travels due north to a marker, then due east, as shown:

N

S

EW

B

Travelling at a speed of 10 knots with respect to the water, the boat must
head 30◦ west of north on the first leg because of the water current. After
rounding the marker and reducing speed to 5 knots with respect to the
water, the boat must be steered 60◦ south of east to allow for the current.
Determine the velocity u of the water current (assumed constant).
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A diagram is helpful. The vector u represents the velocity of the river
current, and has the same magnitude and direction in both diagrams.

N

u

10

E

5 u

Travelling N

Travelling Eπ/6

π/3

θ

π/2-θ

Applying the sine rule, we have

sin θ
10 = sin π

6
‖u‖

cos θ
5 = sin π

3
‖u‖ .

which are easily solvable for ‖u‖ and θ, and hence give u.
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Example 7
An aircraft flies with an airspeed of 750 km/h. In what direction should it
head in order to make progress in a true easterly direction if the wind is
from the northwest at 100 km/h?

Solution The problem is 2-dimensional, so we can use plane vectors.
Choose a coordinate system so that the x - and y -axes point east and
north respectively.

θ
π/4O

P

Q

R
x

y
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−→OQ = vair rel ground

= 100 cos(−π/4)i + 100 sin(−π/4)j
= 50

√
2i− 50

√
2j

−→OP = vaircraft rel air

= 750 cos θi + 750 sin θj

−→OR = vaircraft rel ground

= −→OP +−→OQ
= (750 cos θi + 750 sin θj) + (50

√
2i− 50

√
2j)

= (750 cos θ + 50
√
2)i + (750 sin θ − 50

√
2)j
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We want vaircraft rel ground to be in an easterly direction, that is, in the
positive direction of the x -axis. So for ground speed of the aircraft v , we
have −→OR = v i.

Comparing the two expressions for −→OR we get

v i = (750 cos θ + 50
√
2)i + (750 sin θ − 50

√
2)j.

This implies that

750 sin θ − 50
√
2 = 0 ↔ sin θ =

√
2

15 .

This gives θ ≈ 0.1 radians ≈ 5.4◦.
Using this information v can be calculated, as well as the time to travel a
given distance.
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Overview

Last time, we used coordinate axes to describe points in space and we
introduced vectors. We saw that vectors can be added to each other or
multiplied by scalars.

Question: Can two vectors be multiplied?
dot product
cross product

(From Stewart, §10.3, §10.4)
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The dot product

The dot or scalar product of two vectors is a scalar:

Definition

Given a =




a1
a2
...

an



, b =




b1
b2
...

bn



, the dot product of a and b is defined by

a·b = aT b =
[
a1 a2 . . . an

]




b1
b2
...

bn




= a1b1 + a2b2 + · · ·+ anbn
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Example 1

Let u =



1
4
−2


 and v =



−4
5
−1


, then

u·v = (1)(−4) + (4)(5) + (−2)(−1) = 18.

The following properties come directly from the definition:
1 u·v = v·u
2 u·(v + w) = u·v + u·w
3 k(u·v) = (ku)·v = u·(kv), k ∈ R
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Magnitude and the dot product

Recall that if v =




a
b
c


, the length (or magnitude) of v is defined as

‖v‖ =
√

a2 + b2 + c2 .

The dot product is a convenient way to compute length:

‖v‖ =
√

v·v
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Direction and the dot product
The dot product u · v is useful for determining the relative directions of u
and v.
Suppose u = −→OP, v = −→OQ. The angle θ between u and v is the angle at
O in the triangle POQ.

O

P

Q

x y

z

u

v

v - uθ

Necessarily θ ∈ [0, π].
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Calculating:

‖−→PQ‖2 = (v− u)·(v− u)
= v·v + u·u− v·u− u·v
= ‖u‖2 + ‖v‖2 − 2u·v .

But the cosine rule, applied to triangle POQ, gives

‖−→PQ‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖ · ‖v‖ cos θ

whence
u·v = ‖u‖ · ‖v‖ cos θ (1)

If either u or v are zero then the angle betwen them is not defined. In this
case, however, (1) still holds in the sense that both sides are zero.
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Theorem
If θ is the angle between the directions of u and v (0 ≤ θ ≤ π), then

u·v = ‖u‖ · ‖v‖ cos θ

Definition
Two vectors are called orthogonal or perpendicular or normal if u·v = 0,
that is, θ = π/2.
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Scalar and vector projections
Just as we can write a vector in R2 as a sum of its horizontal and vertical
components, we can write any vector as a sum of piece parallel to and
perpendicular to a fixed vector.

h
u=(h)+(u-h)

u
u

uv

u-uv

v
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Scalar and vector projections
Definition
The scalar projection s = compvu of any vector u in the direction of the
nonzero vector v is the scalar product of u with a unit vector in the
direction of v.

compvu = u· v
‖v‖ = u·v

‖v‖ = ‖u‖ cos θ

where θ is the angle between u and v.

u
v

uv
s

θ

u - uv
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Definition
The vector projection uv = projvu of u in the direction of the nonzero
vector v is the scalar multiple of a unit vector v̂ in the direction of v, by
the scalar projection of u in the direction v:

projvu = u·v
‖v‖ v̂ = u·v

‖v‖2 v.

u
v

uv
s

θ

u - uv
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In words:

The scalar projection of u onto v is. . .
The vector projection of u onto v is. . .

Remember that we can write u as a sum of a vector parallel to v and a
vector perpendicular to v. We call the summand parallel to v the
component in the v direction.

The scalar projection of u onto v is the length of the component of u
in the v direction.
The vector projection of u onto v is the component of u in the v
direction.
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Definition of the cross product

In R3 only, there is a product of two vectors called a cross product or
vector product. The cross product of a and b is a vector denoted a×b.
To specify a vector in R3, we need to give its magnitude and direction.
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Definition of the cross product
Definition
Given a and b in R3 with θ ∈ [0, π] the angle between them, the cross
product a× b is the vector defined by the following properties:

|a× b| = |a||b| sin θ
a×b is orthogonal to both a and b
{a,b, a× b} form a right-handed coordinate system
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Computing cross products

Given a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, how can we find the
coordinates of a× b?

If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, then the cross product of a and b
is the vector

a×b = 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.

You should check that this formula gives a vector satisfying the definition
on the previous slide! Alternatively, we could give this formula as the
definition and then prove those properties as a theorem.
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In order to make the definition easier to remember we use the notation of
determinants. Recall that a determinant of order 2 is defined by

∣∣∣∣∣
a b
c d

∣∣∣∣∣ = ad − bc.

Further a determinant of order 3 can be defined in terms of second order
determinants:

∣∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣∣
= a1

∣∣∣∣∣
b2 b3
c2 c3

∣∣∣∣∣− a2

∣∣∣∣∣
b1 b3
c1 c3

∣∣∣∣∣+ a3

∣∣∣∣∣
b1 b2
c1 c2

∣∣∣∣∣
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We now rewrite the cross product using determinants of order 3 and the
standard basis vectors i, j and k where a = a1i + a2j + a3k and
b = b1i + b2j + b3k

a×b =
∣∣∣∣∣
a2 a3
b2 b3

∣∣∣∣∣ i−
∣∣∣∣∣
a1 a3
b1 b3

∣∣∣∣∣ j +
∣∣∣∣∣
a1 a2
b1 b2

∣∣∣∣∣ k.

In view of the similarity of the last two equations we often write

a×b =

∣∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣
. (2)

Although the first row of the symbolic determinant in Equation 2 consists
of vectors, it can be expanded as if it were an ordinary determinant.
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Example 2
Find a vector with positive k component which is perpendicular to both
a = 2i− j− 2k and b = 2i− 3j + k.

Solution The vector a×b will be perpendicular to both a and b:

a×b =

∣∣∣∣∣∣∣

i j k
2 −1 −2
2 −3 1

∣∣∣∣∣∣∣

= −7i− 6j− 4k.

Now we require a vector with a positive k. It is given by 〈7, 6, 4〉.
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Properties of the cross product

Lemma
Two non zero vectors a and b are parallel (or antiparallel) if and only if

a×b = 0.
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Properties of the cross product

If u v and w are any vectors in R3, and t is a real number, then
1 u×v = − . . . .
2 (u + v)×w = . . . .
3 u×(v + w) = . . . .
4 (tu)×v = u×(tv) = . . . .
5 u·(v×w) = . . . .
6 u×(v×w) = . . .
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Properties of the cross product

If u v and w are any vectors in R3, and t is a real number, then...
1 u×v = −v×u.
2 (u + v)×w = u×w + v×w.
3 u×(v + w) = u×v + u×w.
4 (tu)×v = u×(tv) = t(u×v).
5 u·(v×w) = (u×v)·w.
6 u×(v×w) = (u·w)v− (u·v)w

Note the absence of an associative law. The cross product is not
associative. In general

u×(v×w) 6= (u×v)×w!
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Comparing the dot and cross product

Where is each defined?
What is the output?
What’s the significance of zero?
Is it commutative?
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Example 3
A triangle ABC has vertices (2,−1, 0), (5,−4, 3), (1,−3, 2). Is it a right
triangle?

The sides are −→AB = −→OB −−→OA =



3
−3
3


,
−→AC =



−1
−2
2


 ,
−→BC =



−4
1
−1


.

Since

cos θC =
−→AC ·−→BC
‖−→AC‖‖−→BC‖

= (−1)(−4) + (−2)(1) + (2)(−1)
‖−→AC‖‖−→BC‖

= 0
‖−→AC‖‖−→BC‖

= 0,

the sides −→AC and −→BC are orthogonal.
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Example 4
For what value of k do the four points
A = (1, 1,−1),B = (0, 3,−2),C = (−2, 1, 0) and D = (k, 0, 2) all lie in a
plane?

Solution The points A,B and C form a triangle and all lie in the plane
containing this triangle. We need to find the value of k so that D is in the
same plane.
One way of doing this is to find a vector u perpendicular to −→AB and −→AC ,
and then find k so that −→AD is perpendicular to u.
A suitable vector u is given by −→AB×−→AC . We then require that

u·−→AD = 0.

Putting this together we require that

(−→AB×−→AC)·−→AD = 0.
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Example (continued)
For what value of k do the four points
A = (1, 1,−1),B = (0, 3,−2),C = (−2, 1, 0) and D = (k, 0, 2) all lie in a
plane?

Now
−→AB = −i + 2j− k, −→AC = −3i + k, −→AD = (k − 1)i− j + 3k.

Then
(−→AB×−→AC)·−→AD = −→AD·(−→AB×−→AC)

=

∣∣∣∣∣∣∣

k − 1 −1 3
−1 2 −1
−3 0 1

∣∣∣∣∣∣∣

= (k − 1)2− (−1)(−4) + 3(6)
= 2k − 2− 4 + 18
= 2k + 12

So (−→AB×−→AC)·−→AD = 0 when k = −6, and D lies on the required plane
when D = (−6, 0, 2).A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 24 / 26



Example 5
One use of projections occurs in physics in calculating work.

Ɵ

F

R

S
P QD

Suppose a constant force F = ~PR moves an object from P to Q. The
displacement vector is D = ~PQ. The work done by this force is defined
to be the product of the component of the force along D and the distance
moved:

W = (‖F‖ cos θ) ‖D‖ = F·D.
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Example 6
Let a = 〈1, 3, 0〉 and b = 〈−2, 0, 6〉, Then

compab = a·b
‖a‖

= −2 + 0 + 0√
1 + 9 + 0

= −2√
10
.

projab = a·b
‖a‖ â

=
( a·b
‖a‖

) a
‖a‖

= −2√
10
〈1, 3, 0〉√

10

= 〈−2,−6, 0〉
10 = 〈−1/5,−3/5, 0〉.
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Overview

Last week we introduced vectors in Euclidean space and the operations of
vector addition, scalar multiplication, dot product, and (for R3) cross
product.

Question
How can we use vectors to describe lines and planes in R3?

(From Stewart §10.5)
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Warm-up
Question
Describe all the vectors in R3 which are orthogonal to the 0 vector.
Can you rephrase your answer as a statement about solutions to some
linear equation?

Remember that the statement “v is orthogonal to u" is equivalent to
“v · u = 0".

This question asks for all the vectors




x
y
z


 such that




x
y
z


 ·




0
0
0


 = 0.

Using the definition of the dot product, this translates to asking what


x
y
z


 satisfy the equation 0x + 0y + 0z = 0...

...the answer is that all vectors in R3 are orthogonal to the 0 vector.
Equivalently, every triple (x , y , z) is a solution to the linear equation
0x + 0y + 0z = 0.
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Lines in R2

In the xy -plane the general form of the equation of a line is

ax + by = c,

where a and b are not both zero. If b 6= 0 then this equation can be
rewritten as

y = −(a/b)x + c/b,

which has the form y = mx + k. (Here m is the slope of the line and the
point (0, k) is its y -intercept.)

Example 1
Let L be the line 2x + y = 3. The line has slope m = −2 and the
y -intercept is (0, 3).
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Alternatively, we could think about this line (y = −2x + 3) as the path
traced out by a moving particle.
Suppose that the particle is initially at the point (0, 3) at time t = 0.
Suppose, too, that its x -coordinate changes at a constant rate of 1 unit
per second and its y -coordinate changes as a constant rate of −2 units per
second.
At t = 1 the particle is at (1, 1). If we assume it’s always been moving this
way, then we also know that at t = −2 it was at (−2, 7). In general, we
can display the relationship in vector form:

[
x
y

]
=
[

t
−2t + 3

]
=
[
0
3

]
+ t

[
1
−2

]

What is the significance of the vector v =
[
1
−2

]
?
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In this expression, v is a vector parallel to the line L, and is called a
direction vector for L. The previous example shows that we can express L
in terms of a direction vector and a vector to specific point on L:

Definition
The equation

r = r0 + tv

is the vector equation of the line L. The variable t is called a parameter.

Here, r0 is the vector to a specific point on L; any vector r which satisfies
this equation is a vector to some point on L.

Example 2
[
x
y

]
=
[
0
3

]
+ t

[
1
−2

]
(1)

is the vector equation of the line L.
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If we express the vectors in a vector equation for L in components, we get
a collection of equations relating scalars.

Definition

For r =
[
x
y

]
, r0 =

[
x0
y0

]
, v =

[
a
b

]
, the parametric equations of the line

r = r0 + tv are

x = x0 + ta
y = y0 + tb.
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Lines in R3

The definitions of the vector and parametric forms of a line carry over
perfectly to R3.

Definition
The vector form of the equation of the line L in R2 or R3 is

r = r0 + tv

where r0 is a specific point on L and v 6= 0 is a direction vector for L.
The equations corresponding to the components of the vector form of the
equation are called parametric equations of L.
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Example 3

Let r0 =



1
4
−2


 and v =



1
2
2


. Then the vector equation of the line L is

r =



1
4
−2


+ t



1
2
2


 .

The line L contains the point (1, 4,−2) and has direction parallel to

v =



1
2
2


. By taking different values of t we can find different points on

the line.
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Question
For a given line, is the vector equation for the line unique?

No, any vector parallel to the direction vector is another direction vector,
and each choice of a point on L will give a different r0.
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Example 4
The line with parametric equations

x = 1 + 2t y = −4t z = −3 + 5t.

can also be expressed as

x = 3 + 2t y = −4− 4t z = 2 + 5t.

or as
x = 1− 4t y = 8t z = −3− 10t.

Note that a fixed value of t corresponds to three different points on L
when plugged into the three different systems.
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Symmetric equations of a line
Another way of describing a line L is to eliminate the parameter t from the
parametric equations

x = x0 + at y = y0 + bt z = z0 + ct

If a 6= 0, b 6= 0 and c 6= 0 then we can solve each of the scalar equations
for t and obtain x − x0

a = y − y0
b = z − z0

c .

These equations are called the symmetric equations of the line L through
(x0, y0, z0) parallel to v. The numbers a, b and c are called the direction
numbers of L.
If, for example a = 0, the equation becomes

x = x0,
y − y0

b = z − z0
c .
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Example 5
Find parametric and symmetric equations for the line through (1, 2, 3) and
parallel to 2i + 3j− 4k.

The line has the vector parametric form

r = i + 2j + 3k + t(2i + 3j− 4k),

or scalar parametric equations




x = 1 + 2t
y = 2 + 3t (−∞ < t <∞).
z = 3− 4t

Its symmetric equations are

x − 1
2 = y − 2

3 = z − 3
−4 .
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Example 6
Determine whether the two lines given by the parametric equations below
intersect

L1 : x = 1 + 2t, y = 3t, z = 2− t

L2 : x = −1 + s, y = 4 + s, z = 1 + 3s

If L1 and L2 intersect, there will be values of s and t satisfying

1 + 2t = −1 + s
3t = 4 + s

2− t = 1 + 3s

Solving the first two equations gives s = 14, t = 6, but these values don’t
satisfy the third equation. We conclude that the lines L1 and L2 don’t
intersect.
In fact, their direction vectors are not proportional, so the lines aren’t
parallel, either. They are skew lines.
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Planes in R3

We described a line as the set of position vectors expressible as r0 + v,
where r0 was a position vector of a point in L and v was any vector
parallel to L.
We can describe a plane the same way: the set of position vectors
expressible as the sum of a position vector to a point in P and an arbitrary
vector parallel to P.

x y

z

r0 r

P0
P

x y

z

r0

v
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Choose a vector n which is orthogonal to the plane and choose an
arbitrary point P0 in the plane.

x y

z

n

r0 r

r-r0P0
P

How can we use this data to describe all the other points P which lie in
the plane?
Let r0 and r be the position vectors of P0 and P respectively.
The normal vector n is orthogonal to every vector in the plane. In
particular n is orthogonal to r − r0 and so we have

n·(r − r0) = 0.
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This equation
n·(r − r0) = 0. (2)

can be rewritten as
n·r = n·r0. (3)

Either of the equations (2) or (3) is called a vector equation of the plane.
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Example 7
Find a vector equation for the plane passing through P0 = (0,−2, 3) and
normal to the vector n = 4i + 2j− 3k.

We have r0 = 〈0,−2, 3〉 and n = 〈4, 2,−3〉. Thus the vector form is

n · (r − r0
)

= 0,

or
(4i + 2j− 3k)· [(x − 0)i + (y + 2)j + (z − 3)k] = 0.

Expanding this gives us a scalar equation for the plane...
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Given n = 〈A, B, C〉, r = 〈x , y , z〉 and r0 = 〈x0, y0, z0〉, the vector equation
n·(r − r0) = 0 becomes

〈A, B, C〉·〈x − x0, y − y0, z − z0〉 = 0,

or
A(x − x0) + B(y − y0) + C(z − z0) = 0. (4)

Equation (4) is the scalar equation of the plane through P0(x0, y0, z0) with
normal vector n = 〈A, B, C〉.
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The equation

A(x − x0) + B(y − y0) + C(z − z0) = 0.

can be written more simply in standard form

Ax + By + Cz + D = 0,

where D = −(Ax0 + By0 + Cz0).

If D = 0, the plane passes through the origin.
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Example 8
Find a scalar equation for the plane passing through P0 = (0,−2, 3) and
normal to the vector n = 4i + 2j− 3k.

The vector form is

(4i + 2j− 3k)· [(x − 0)i + (y + 2)j + (z − 3)k] = 0,

which in scalar form becomes

4(x − 0) + 2(y + 2)− 3(z − 3) = 0

and this is equivalent to

4x + 2y − 3z = −13.
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Example 9
Find a scalar equation of the plane containing the points

P = (1, 1, 2), Q = (0, 2, 3), R = (−1,−1,−4).

First, we should find a normal vector n to the plane, and there are several
ways to do this.
The vector n = n1i + n2j + n3k will be perpendicular to −→PQ = −i + j + k
and −→PR = −2i− 2j− 6k. Therefore, we can solve a system of linear
equations:

0 = n · (−i + j + k) = −n1 + n2 + n3

0 = n · (−2i− 2j− 6k) = −2n1 − 2n2 − 6n3.

One solution to this system is n = −i− 2j + k, so this is an example of a
normal vector to the plane containing the 3 given points.
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We can use this normal vector n = −i− 2j + k, together with any one of

the given points to write the equation of the plane. Using Q =



0
2
3


, the

equation is
−(x − 0)− 2(y − 2) + 1(z − 3) = 0,

which simplifies to
x + 2y − z = 1.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 23 / 28

The first step in this example was finding the normal vector n, but in fact,
there’s another way to do this.

Recall that in R3 only, there is a product of two vectors called a cross
product. The cross product of a and b is a vector denoted a×b which is
orthogonal to both a and b. If we have two nonzero vectors a and b
parallel to our plane, then n = a×b is a normal vector.
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Example 10
Consider the two planes

x − y + z = −1 and 2x + y + 3z = 4.

Explain why the planes above are not parallel and find a direction vector
for the line of intersection.

Two planes are parallel if and only if their normal vectors are parallel.
Normal vectors for the two planes above are for example

n1 = i− j + k and n2 = 2i + j + 3k
respectively. These vectors are not parallel, so the planes can’t be parallel
and must intersect. A vector v parallel to the line of intersection is a
vector which is orthogonal to both the normal vectors above. We can find
such a vector by calculating the cross product of the normal vectors:

v =

∣∣∣∣∣∣∣

i j k
1 −1 1
2 1 3

∣∣∣∣∣∣∣
= −4i− j + 3k.
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Example 11
Find the line through the origin and parallel to the line of intersection of
the two planes

x + 2y − z = 2 and 2x − y + 4z = 5.

The planes have respective normals

n1 = i + 2j− k and n2 = 2i− j + 4k.

A direction vector for their line of intersection is given by

v = n1×n2 = 7i− 6j− 5k.

A vector parametric equation of the line is

r = t(7i− 6j− 5k),

since the line passes through the origin.
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Parametric equations for this line are, for example,

x = 7t
y = −6t
z = −5t

and the corresponding symmetric equations are
x
7 = y

−6 = z
−5 .
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Recommended exercises for review

Stewart §10.5: 1, 3, 15, 19, 25, 29, 35
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Overview

Yesterday we introduced equations to describe lines and planes in R3:
r = r0 + tv
The vector equation for a line describes arbitrary points r in terms of
a specific point r0 and the direction vector v.
n · (r − r0) = 0
The vector equation for a plane describes arbitrary points r in terms
of a specific point r0 and the normal vector n.

Question
How can we find the distance between a point and a plane in R3? Between
two lines in R3? Between two planes? Between a plane and a line?

(From Stewart §10.5)
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Distances in R3

The distance between two points is the length of the line segment
connecting them. However, there’s more than one line segment from a
point P to a line L, so what do we mean by the distance between them?

The distance between any two subsets A, B of R3 is the smallest distance
between points a and b, where a is in A and b is in B.

To determine the distance between a point P and a line L, we need to
find the point Q on L which is closest to P, and then measure the
length of the line segment PQ.
This line segment is orthogonal to L.
To determine the distance between a point P and a plane S, we need
to find the point Q on S which is closest to P, and then measture the
length of the line segment PQ.
Again, this line segment is orthogonal to S.

In both cases, the key to computing these distances is drawing a picture
and using one of the vector product identitites.
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Distance from a point to a plane
We find a formula for the distance s from a point P1 = (x1, y1, z1) to the
plane Ax + By + Cz + D = 0.

x y

z

n

r

b

P1

s

P0

Let P0 = (x0, y0, z0) be any point in the given plane and let b be the
vector corresponding to ~P0P1. Then

b = 〈x1 − x0, y1 − y0, z1 − z0〉.
The distance s from P1 to the plane is equal to the absolute value of the
scalar projection of b onto the normal vector n = 〈A,B,C〉.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 3 / 17



s = | compnb |

= | n·b |
||n||

= |A(x1 − x0) + B(y1 − y0) + C(z1 − z0)|√
A2 + B2 + C2

= |Ax1 + By1 + Cz1 − (Ax0 + By0 + Cz0)|√
A2 + B2 + C2

Since P0 is on the plane, its coordinates satisfy the equation of the plane
and so we have Ax0 + By0 + Cz0 + D = 0. Thus the formula for s can be
written

s = |Ax1 + By1 + Cz1 + D|√
A2 + B2 + C2
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Example 1
We find the distance from the point (1, 2, 0) to the plane
3x − 4y − 5z − 2 = 0.

From the result above, the distance s is given by

s = |Ax0 + By0 + Cz0 + D|√
A2 + B2 + C2

where (x0, y0, z0) = (1, 2, 0),

A = 3,B = −4,C = −5 and D = −2.

This gives

s = |3 · 1 + (−4) · 2 + (−5) · 0− 2|√
32 + (−4)2 + (−5)2

= 7√
50

= 7
5
√
2

= 7
√
2

10 .
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Distance from a point to a line

Question
Given a point P0 = (x0, y0, z0) and a line L in R3, what is the distance
from P0 to L?

Tools:
describe L using vectors
||u× v|| = ||u||||v|| sin θ
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Distance from a point to a line
Let P0 = (x0, y0, z0) and let L be the line through P1 and parallel to the
nonzero vector v. Let r0 and r1 be the position vectors of P0 and P1
respectively. P2 on L is the point closest to P0 if and only if the vector−−−→P2P0 is perpendicular to L.

x y

z

vvvv

r0

r0-r1

P0

v

r1

P1
P2

s
ℒ

θ

The distance from P0 to L is given by

s = ||−−−→P2P0|| = ||
−−−→P1P0|| sin θ = ||r0 − r1|| sin θ

where θ is the angle between r0 − r1 and v
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Since
||(r0 − r1)× v|| = ||r0 − r1|| ||v|| sin θ

we get the formula

s = ||r0 − r1|| sin θ

= ||(r0 − r1)× v||
||v||
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Example 2
Find the distance from the point (1, 1,−1) to the line of intersection of
the planes

x + y + z = 1, 2x − y − 5z = 1.

The direction of the line is given by v = n1×n2 where n1 = i + j + k, and
n2 = 2i− j− 5k.

v = n1×n2 = −4i + 7j− 3k.

x
y

z

r0-r1

P0=(1,1,-1)

v
P1=(1,-1/4,1/4) P2

s

In the diagram, P1 is an arbitrary point on the line. To find such a point,
put x = 1 in the first equation. This gives y = −z which can be used in
the second equation to find z = 1/4, and hence y = −1/4.
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Here −−−→P1P0 = r0 − r1 = 5
4 j− 5

4k. So

s = ||(r0 − r1)×v||
||v||

= ||(5
4 j− 5

4k)×(−4i + 7j− 3k)||√
(−4)2 + 72 + (−3)2

= ||5i + 5j + 5k||√
74

=
√

75
74 .
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Distance between two lines

Let L1 and L2 be two lines in R3 such that
- L1 passes through the point P1 and is parallel to the vector v1

- L2 passes through the point P2 and is parallel to the vector v2.
Let r1 and r2 be the position vectors of P1 and P2 respectively.
Then parametric equation for these lines are

L1 r = r1 + tv1

L2 r̃ = r2 + sv2

Note that r2 − r1 = −−−→P1P2.
We want to compute the smallest distance d (simply called the distance)
between the two lines.
If the two lines intersect, then d = 0. If the two lines do not intersect we
can distinguish two cases.
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Case 1: L1 and L2 are parallel and do not intersect.
In this case the distance d is simply the distance from the point P2 to the
line L1 and is given by

d = ||
−−−→P1P2 × v1||
||v1||

= ||(r2 − r1)× v1||
||v1||
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Case 2: L1 and L2 are skew lines.

If P3 and P4 (with position vectors r3 and r4 respectively) are the points
on L1 and L2 that are closest to one another, then the vector −−−→P3P4 is
perpendicular to both lines (i.e. to both v1 and v2) and therefore parallel
to v1 × v2. The distance d is the length of −−−→P3P4.
Notice that d = ||r4 − r3||, which we can rewrite as

d = |(r4 − r3) · (v1 × v2)|
||v1 × v2||

because r4 − r3 is parallel to v1 × v2).
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What’s the point of doing this? Of course we don’t know what r4 or r3 is.
Here’s the trick: Notice that

r4 = r2 + tv2 r3 = r1 + sv1

for some s and t.
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Now substitute these into our dimension formula, obtaining

d = |(r2 − r1 + tv2 − sv1) · (v1 × v2)|
||v1 × v2||

which simplifies, since v1 × v2 is orthogonal to both v1 and v1, to

d = |(r2 − r1) · (v1 × v2)|
||v1 × v2||

Thus we don’t need to know r4 or r3 explicitly at all! (Exercise — find
formulas for them!)
Observe that if the two lines are parallel then v1 and v2 are proportional
and thus v1 × v2 = 0 (the zero vector) and the above formula does not
make sense.
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Example 3
Find the distance between the skew lines

{
x + 2y = 3
y + 2z = 3 and

{
x + y + z = 6
x − 2z = −5

x y

z

vvvv

r0

r2-r1

P4

P3
P1

ℒ1

P2
ℒ2

v1× v2

 v2

v1

We can take P1 = (1, 1, 1), a point on the first line, and P2 = (1, 2, 3) a
point on the second line. This gives r2 − r1 = j + 2k.
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Now we need to find v1 and v2:

v1 = (i + 2j)×(j + 2k) = 4i− 2j + k,

and
v2 = (i + j + k)×(i− 2k) = −2i + 3j− k.

This gives
v1×v2 = −i + 2j + 8k.

The required distance d is the length of the projection of r2 − r1 in the
direction of v1×v2, and is given by

d = |(r2 − r1)·(v1×v2)|
||v1×v2||

= |(j + 2k)·(−i + 2j + 8k)|√
(−1)2 + 22 + 82

= 18√
69
.
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Overview

We’ve studied the geometric and algebraic behaviour of vectors in
Euclidean space. This week we turn to an abstract model that has many
of the same algebraic properties.

The importance of this is two-fold:
Many models of physical processes do not sit in R3, or indeed in Rn

for any n.
Apparently different situations often turn out to be “essentially” the
same; studying the abstract case solves many problems at once.

(Lay, §4.1)
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Let’s review vector operations in language that will help set up our
generalisation:

Vectors are objects which can be added together or multiplied by
scalars; both operations give back a vector.
Vector addition is commutative and associative; scalar multiplication
and vector addition are distributive.
Adding the zero vector to v doesn’t change v.
Multiplying a vector v by the scalar 1 doesn’t change v.
Adding v to (−1)v gives the zero vector.

(Notice that we haven’t included the dot product. This does have a role to
play in our abstract setting, but we’ll come to it later in the term.)
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Definition
A vector space is a non-empty set V of objects called vectors on which are
defined operations of addition and multiplication by scalars. These objects
and operations must satisfy the following ten axioms for all u, v and w in
V and for all scalars c and d .

For now, we’ll take the set of scalars to be the real numbers. In a few
weeks, we’ll consider vector spaces where the scalars are complex numbers
instead.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 3 / 28



Definition
A vector space is a non-empty set V of objects called vectors on which are
defined operations of addition and multiplication by scalars. These objects
and operations must satisfy the following ten axioms for all u, v and w in
V and for all scalars c and d .

The axioms for a vector space

1 u + v is in V ;
2 u + v = v + u; (commutativity)
3 (u + v) + w = u + (v + w); (associativity)
4 there is an element 0 in V , 0 + u = u;
5 there is −u ∈ V with u + (−u) = 0;
6 cu is in V ;
7 c(u + v) = cu + cv;
8 (c + d)u = cu + du;
9 c(du) = (cd)u;
10 1u = u.
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Example 1

Let M2×2 =
{[

a b
c d

]
: a, b, c, d ∈ R

}
, with the usual operations of

addition of matrices and multiplication by a scalar.

In this context the the zero vector 0 is
[
0 0
0 0

]
.

The negative of the vector v =
[
a b
c d

]
is −v =

[
−a −b
−c −d

]
.

For the same vector v and t ∈ R we have tv =
[
ta tb
tc td

]
.

If v =
[
a b
c d

]
and w =

[
e f
g h

]
then u + w =

[
a + e b + f
c + g d + h

]
.
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Example 2
Let P2 be the set of all polynomials of degree at most 2 with coefficients
in R. Elements of P2 have the form

p(t) = a0 + a1t + a2t2

where a0, a1 and a2 are real numbers and t is a real variable. You are
already familiar with adding two polynomials or multiplying a polynomial
by a scalar.
The set P2 is a vector space.

We will just verify 3 out of the 10 axioms here.
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Let p(t) = a0 + a1t + a2t2 and q(t) = b0 + b1t + b2t2, and let c be a
scalar.
Axiom 1: v + u is in V
The polynomial p + q is defined in the usual way:
(p + q)(t) = p(t) + q(t). Therefore,

(p + q)(t) = p(t) + q(t) = (a0 + b0) + (a1 + b1)t + (a2 + b2)t2

which is also a polynomial of degree at most 2. So p + q is in P2.
Axiom 4: v + 0 = v
The zero vector 0 is the zero polynomial 0 = 0 + 0t + 0t2.

(p + 0)(t) = p(t) + 0(t) = (a0 + 0) + (a1 + 0)t + (a2 + 0)t2 = p(t).

So p + 0 = p.
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Axiom 6: cu is in V

(cp)(t) = cp(t) = (ca0) + (ca1)t + (ca2)t2.

This is again a polynomial in P2.
The remaining 7 axioms also hold, so P2 is a vector space.
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In fact, the previous example generalises:

Example 3
Let Pn be the set of polynomials of degree at most n with coefficients in
R. Elements of Pn are polynomials of the form

p(t) = a0 + a1t + . . . + antn

where a0, a1, . . . , an are real numbers and t is a real variable.
As in the example above, the usual operations of addition of polynomials
and multiplication of a polynomial by a real number make Pn a vector
space.
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Example 4
The set Z of integers with the usual operations is not a vector space. To
demonstrate this it is enough to to find that one of the ten axioms fails
and to give a specific instance in which it fails (i.e., a counterexample).

In this case we find that we do not have closure under scalar multiplication
(Axiom 6). For example, the multiple of the integer 3 by the scalar 1

4 is
(1
4

)
(3) = 3

4

which is not an integer. Thus it is not true that cx is in Z for every x in Z
and every scalar c.
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Example 5
Let F denote the set of real valued functions defined on the real line. If f
and g are two such functions and c is a scalar, then f + g and cf are
defined by

(f + g)(x) = f (x) + g(x) and (cf )(x) = cf (x).

This means that the value of f + g at x is obtained by adding together the
values of f and g at x . So if f is the function f (x) = cos x and g is
g(x) = ex then

(f + g)(0) = f (0) + g(0) = cos 0 + e0 = 1 + 1 = 2.

We find cf in a similar way. This means axioms 1 and 6 are true. The
other axioms need to be verified, and with that verification F is a vector
space.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 11 / 28

Sometimes we have vector spaces with unintuitive operations for addition
and scalar multiplication.

Example 6
Consider R>0, the positive real numbers, under the following operations:

v⊕w = vw
c ⊗ v = vc .

Counterintuitively, this is a vector space! For example, we can check
Axiom 7:

c ⊗ (u⊕ v) = (uv)c

while

(c ⊗ u)⊕ (c ⊗ v) = ucvc .

To make things work out, we find 0 = 1, and −u = u−1

What’s going on here?
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The following theorem is a direct consequence of the axioms.

Theorem
Let V be a vector space, u a vector in V and c a scalar.

1 0 is unique;
2 −u is the unique vector that satisfies u + (−u) = 0;
3 0u = 0; (note difference between 0 and 0)
4 c0 = 0;
5 (−1)u = −u.

Exercises 4.1.25 - 29 of Lay outline the proofs of these results.
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Subspaces

Some of the vector space examples we’ve seen “sit inside” others.
For example, we sketched the proof that P2 and P4 are both vector spaces.
Any polynomial of degree at most two can also be viewed as a polynomial
of degree at most 4:

a0 + a1t + a2t2 = a0 + a1t + a2t2 + 0t3 + 0t4.

If you have a subset H of a vector space V , some of the axioms are
satisfied for free. For example, you don’t need to check that scalar
multiplication in H distributes through vector addition: you already know
this is true in H because it’s true in V .
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Subspaces

This idea is formalised in the notion of a subspace.

Definition
A subspace of a vector space V is a subset H of V such that

1 The zero vector is in H: 0 ∈ H;
2 whenever u, v are in H, u + v is in H.

“ H is closed under vector addition."
3 cu is in H whenever u is in H and c is in R.

“H is closed under scalar multiplication."

This is not a new idea: in MATH1013 the same definition is given for
subspaces of Rn.
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Examples

Example 7
If V is any vector space, the subset {0} of V containing only the zero
vector 0 is a subspace of V .

This is called the zero subspace or the trivial subspace.
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Example 8

Let H =







a
0
b


 : a, b ∈ R




. Show that H is a subspace of R3.

The zero vector of R3 is in H: set a = 0 and b = 0.
H is closed under addition: adding two vectors in H always produces
another vector whose second entry is 0 and therefore in H.
H is closed under scalar multiplication: multiplying a vector in H by a
scalar produces another vector in H.

Since all three properties hold, H is a subspace of R3.
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If we identify vectors in R3 with points in 3D space as usual, then H is the
plane through the origin given by the homogeneous equation y = 0.

H is a plane, but H is NOT EQUAL to R2!
(The set R2 is not contained in R3.)
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Example 9

Is H =
{[

s
s + 1

]
: s ∈ R

}
a subspace of R2?

We can identify H with the line whose equation is y = x + 1.

Clearly, the zero vector is not in H, so H is not a subspace of R2.
(Observe that the equation y = x + 1 is not homogeneous).
As you saw in MATH1013, lines and planes through the origin are
subspaces of Rn while lines and planes that do not pass through the origin
are not subspaces.
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Example 10
Let W be the set of symmetric 2× 2 matrices:

W =
{[

a b
b d

] ∣∣∣∣∣ a, b, d ∈ R
}

=
{
A | AT = A

}
.

Then W is a subspace of M2×2.

The zero matrix satisfies the condition:
[
0 0
0 0

]T
=
[
0 0
0 0

]
.

Let A and B be in W . Then AT = A and BT = B, from which it
follows that

(A + B)T = AT + BT = A + B.

Therefore A + B is symmetric and is in W .
Similarly, (cA)T = cAT = cA, so cA is symmetric and is in W .
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Example 11
Let V be the first quadrant in the xy -plane:

V =
{[

x
y

]
: x ≥ 0, y ≥ 0

}
.

Is V a subspace of R2?

The answer is NO. Look at the picture below for example
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Example 12
Let H be the set of all polynomials (with coefficients in R) of degree at
most two that have value 0 at t = 1

H = {p ∈ P2 : p(1) = 0}.

Is H a subspace of P2?

The zero polynomial satisfies 0(t) = 0 for every t, so in particular 0(1) = 0.
Let p and q be in H. Then p(1) = 0 and q(1) = 0
Thus

(p + q)(1) = p(1) + q(1) = 0 + 0 = 0.

If c is in R and p is in H we have

(cp)(1) = c(p(1)) = c0 = 0.

Yes, H is a subspace of P2!
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Example 13
Let U be the set of all polynomials (with coefficients in R) of degree at
most two that have value 2 at t = 1

U = {p ∈ P2 : p(1) = 2}.

Is U a subspace of P2?

NO! In fact, the subset U doesn’t satisfy any of the three subspace axioms.
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Span: a recipe for building a subspace

Definition
Given a set of vectors S = {v1, v2, . . . , vp} in V , then the set of all vectors
that can be written as linear combinations of the vectors is S is called
Span(S):

Span(S) = {c1v1 + · · ·+ cpvp : c1, . . . , cp are real numbers}

Theorem
Let S = {v1, v2, . . . , vp} be a set of vectors in a vector space V . Then
Span(S) is a subspace of V .

The subspace Span(S) is the “smallest" subspace of V that contains S, in
the sense that if H is a subspace of V that contains all the vectors in S
then Span(S) ⊂ H.
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Example 14
Let V = {〈a + 3b, 3a − 2b〉 : a, b ∈ R}. Is V a subspace of R2?

Write the vectors in V in column form:
[
a + 3b
3a − 2b

]
=

[
a
3a

]
+
[
3b
−2b

]

= a
[
1
3

]
+ b

[
3
−2

]

So V = Span {v1, v2}, where v1 =
[
1
3

]
and v2 =

[
3
−2

]
, and it is therefore

a subspace of R2.
(In fact, it’s all of R2, but that still counts as a subspace!)
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Example 15
Let W be the set of all vectors in R4 of the form




4a − 2b
a + b + c

0
−2c − 6a


 (a, b, c ∈ R) (W )

Show that W is a subspace of R4.
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Since 


4a − 2b
a + b + c

0
−2c − 6a


 = a




4
1
0
−6


+ b




−2
1
0
0


+ c




0
1
0
−2


 ,

it follows that W is the subspace of R4 spanned by the three vectors



4
1
0
−6


 ,




−2
1
0
0


 ,




0
1
0
−2


 .
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Suggested exercises for review

Lay §4.1: 3, 9, 13, 33
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Warm-up

Question
Do you understand the following sentence?

The set of 2× 2 symmetric matrices is a subspace of the vector
space of 2× 2 matrices.
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Overview
Last time we defined an abstract vector space as a set of objects that
satisfy 10 axioms. We saw that although Rn is a vector space, so is the set
of polynomials of a bounded degree and the set of all n × n matrices. We
also defined a subspace to be a subset of a vector space which is a vector
space in its own right.

To check if a subset of a vector space is a subspace, you need to
check that it contains the zero vector and is closed under
addition and scalar multiplication.

Recall from 1013 that a matrix has two special subspaces associated to it:
the null space and the column space.

Question
How do the null space and column space generalise to abstract vector
spaces?

(Lay, §4.2)
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Matrices and systems of equations

Recall the relationship between a matrix and a system of linear equations:

Let A =
[
a1 a2 a3
a4 a5 a6

]
and let b =

[
b1
b2

]
.

The equation Ax = b corresponds to the system of equations

a1x + a2y + a3z = b1

a4x + a5y + a6z = b2.

We can find the solutions by row-reducing the augmented matrix
[
a1 a2 a3 b1
a4 a5 a6 b2

]

to reduced echelon form.
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The null space of a matrix

Let A be an m × n matrix.

Definition
The null space of A is the set of all solutions to the homogeneous
equation Ax = 0:

Nul A = {x : x ∈ Rn and Ax = 0}.
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Example 1

Let A =
[
1 0 4
0 1 −3

]
.

Then the null space of A is the set of all scalar multiples of v =



−4
3
1


.

We can check easily that Av = 0.
Furthermore, A(tv) = tAv = t0 = 0, so tv ∈ NulA.
To see that these are the only vectors in Nul A, solve the associated
homogeneous system of equations.
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The null space theorem

Theorem (Null Space is a Subspace)
The null space of an m × n matrix A is a subspace of Rn.

This implies that the set of all solutions to a system of m homogeneous
linear equations in n unknowns is a subspace of Rn.
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The null space theorem
Proof Since A has n columns, Nul A is a subset of Rn. To show a subset
is a subspace, recall that we must verify 3 axioms:

0 ∈ Nul A because A0 = 0.
Let u and v be any two vectors in Nul A. Then

Au = 0 and Av = 0.

Therefore
A(u + v) = Au + Av = 0 + 0 = 0.

This shows that u + v ∈ Nul A.
If c is any scalar, then

A(cu) = c(Au) = c0 = 0.

This shows that cu ∈ Nul A.
This proves that Nul A is a subspace of Rn.
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Example 2

Let W =








r
s
t
u


 : 3s − 4u = 5r + t

3r + 2s − 5t = 4u





Show that W is a subspace.

Hint: Find a matrix A such that Nul A=W .

If we rearrange the equations given in the description of W we get

−5r + 3s − t − 4u = 0
3r + 2s − 5t − 4u = 0.

So if A is the matrix A =
[
−5 3 −1 −4
3 2 −5 −4

]
, then W is the null space of

A, and by the Null Space is a Subspace Theorem, W is a subspace of R4.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 8 / 31

An explicit description of Nul A

The span of any set of vectors is a subspace. We can always find a
spanning set for Nul A by solving the associated system of equations. (See
Lay §1.5).
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The column space of a matrix

Let A be an m × n matrix.

Definition
The column space of A is the set of all linear combinations of the
columns of A.
If A =

[
a1 a2 · · · an

]
, then

Col A = Span {a1, a2, . . . , an}.

Theorem
The column space of an m × n matrix A is a subspace of Rm.

Why?
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Example 3
Suppose

W =







3a + 2b
7a − 6b
−8b


 : a, b ∈ R





.

Find a matrix A such that W = Col A.

W =





a



3
7
0


+ b



2
−6
−8


 : a, b ∈ R





= Span







3
7
0


 ,



2
−6
−8








Put A =



3 2
7 −6
0 −8


. Then W = Col A.
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Another equivalent way to describe the column space is

Col A = {Ax : x ∈ Rn} .

Example 4
Let

u =




6
7
1
−4


 , A =




5 −5 −9
8 8 −6
−5 −9 3
3 −2 −7




Does u lie in the column space of A?

We just need to answer: does Ax = u have a solution?
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Consider the following row reduction:



5 −5 −9
8 8 −6
−5 −9 3
3 −2 −7

∣∣∣∣∣∣∣∣∣

6
7
1
−4




rref−−→




1 0 0
0 1 0
0 0 1
0 0 0

∣∣∣∣∣∣∣∣∣

11/2
−2
7/2
0


 .

We see that the system Ax = u is consistent.
This means that the vector u can be written as a linear combination of the
columns of A.
Thus u is contained in the Span of the columns of A, which is the column
space of A. So the answer is YES!
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Comparing Nul A and Col A

Example 5

Let A =
[
4 5 −2 6 0
1 1 0 1 0

]
.

The column space of A is a subspace of Rk where k = ___.
The null space of A is a subspace of Rk where k = ___.
Find a nonzero vector in Col A. (There are infinitely many.)
Find a nonzero vector in Nul A.

For the final point, you may use the following row reduction:
[
4 5 −2 6 0
1 1 0 1 0

]
→
[
1 1 0 1 0
4 5 −2 6 0

]
→
[
1 1 0 1 0
0 1 −2 2 0

]
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Table: For any m × n matrix A

Nul A Col A

1. Nul A is a subspace of Rn. 1.Col A is a subspace of Rm.

2. Any v in Nul A has
the property that Av = 0.

2. Any v in Col A has the
property that the equation
Ax = v is consistent.

3. Nul A = {0} if and only if
the equation Ax = 0 has only
the trivial solution.

3. Col A = Rm if and only if
the equation Ax = b has a
solution for every b ∈ Rm.
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Question
How does all this generalise to an abstract vector space?

An m× n matrix defines a function from Rn to Rm, and the null space and
column space are subspaces of the domain and range, respectively.
We’d like to define the analogous notions for functions between arbitrary
vector spaces.
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Linear transformations

Definition
A linear transformation from a vector space V to a vector space W is a
function T : V →W such that
L1. T (u + v) = T (u) + T (v) for u, v ∈ V ;
L2. T (cu) = cT (u) for u ∈ V , c ∈ R.
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Matrix multiplication always defines a linear transfomation.

Example 6

Let A =
[
1 0 2
1 −1 4

]
. Then the mapping defined by

TA(x) = Ax

is a linear transformation from R3 to R2.
For example

TA






1
−2
3





 =

[
1 0 2
1 −1 4

]

1
−2
3


 =

[
7
15

]
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Example 7
Let T : P2 → P0 be the map defined by

T (a0 + a1t + a2t2) = 2a0.

Then T is a linear transformation.

T
(
(a0 + a1t + a2t2) + (b0 + b1t + b2t2)

)

= T
(
(a0 + b0) + (a1 + b1)t + (a2 + b2)t2)

= 2(a0 + b0)
= 2a0 + 2b0

= T (a0 + a1t + a2t2) + T (b0 + b1t + b2t2).

T
(
c(a0 + a1t + a2t2)

)
= T (ca0 + ca1t + ca2t2)
= 2ca0

= cT (a0 + a1t + a2t2)
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Kernel of a linear transformation

Definition
The kernel of a linear transformation T : V →W is the set of all vectors
u in V such that T (u) = 0.
We write

kerT = {u ∈ V : T (u) = 0}.

The kernel of a linear transformation T is analogous to the null space of a
matrix, and kerT is a subspace of V .

If kerT = {0}, then T is one to one.
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The range of a linear transformation

Definition
The range of a linear transformation T : V →W is the set of all vectors
in W of the form T (u) where u is in V .
We write

Range T = {w : w = T (u) for some u ∈ V }.

The range of a linear transformation is analogous to the columns space of
a matrix, and Range T is a subspace of W .

The linear transformation T is onto if its range is all of W .
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Example 8
Consider the linear transformation T : P2 → P0 by

T (a0 + a1t + a2t2) = 2a0.

Find the kernel and range of T .

The kernel consists of all the polynomials in P2 satisfying 2a0 = 0. This is
the set

{a1t + a2t2}.
The range of T is P0.
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Example 9
The differential operator D : P2 → P1 defined by D(p(x)) = p′(x) is a
linear transformation. Find its kernel and range.

First we see that
D(a + bx + cx2) = b + 2cx .

So

kerD = {a + bx + cx2 : D(a + bx + cx2) = 0}
= {a + bx + cx2 : b + 2cx = 0}

But b + 2cx = 0 if and only if b = 2c = 0, which implies b = c = 0.
Therefore

kerD = {a + bx + cx2 : b = c = 0}
= {a : a ∈ R}
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The range of D is all of P1 since every polynomial in P1 is the image under
D (i.e the derivative) of some polynomial in P2.
To be more specific, if a + bx is in P1, then

a + bx = D
(

ax + b
2 x2

)
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Example 10
Define S : P2 → R2 by

S(p) =
[
p(0)
p(1)

]
.

That is, if p(x) = a + bx + cx2, we have

S(p) =
[

a
a + b + c

]
.

Show that S is a linear transformation and find its kernel and range.
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Leaving the first part as an exercise to try on your own, we’ll find the
kernel and range of S.

From what we have above, p is in the kernel of S if and only if

S(p) =
[

a
a + b + c

]
=
[
0
0

]

For this to occur we must have a = 0 and c = −b.
So p is in the kernel of S if

p(x) = bx − bx2 = b(x − x2).

This gives ker S = Span
{
x − x2}.
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The range of S.

Since S(p) =
[

a
a + b + c

]
and a, b and c are any real numbers, the

range of S is all of R2.
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Example 11
let F : M2×2 → M2×2 be the linear transformation defined by taking the
transpose of the matrix:

F (A) = AT .

We find the kernel and range of F .

We see that

ker F = {A in M2×2 : F (A) = 0}
= {A in M2×2 : AT = 0}

But if AT = 0, then A = (AT )T = 0T = 0. It follows that ker F = 0.
For any matrix A in M2×2, we have A = (AT )T = F (AT ). Since AT is in
M2×2 we deduce that Range F = M2×2.
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Example 12
Let S : P1 → R be the linear transformation defined by

S(p(x)) =
∫ 1

0
p(x)dx .

We find the kernel and range of S.

In detail, we have

S(a + bx) =
∫ 1

0
(a + bx)dx

=
[
ax + b

2 x2
]1

0

= a + b
2 .
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Therefore,

ker S = {a + bx : S(a + bx) = 0}

=
{

a + bx : a + b
2 = 0

}

=
{

a + bx : a = −b
2

}

=
{
−b
2 + bx

}

Geometrically, ker S consists of all those linear polynomials whose graphs
have the property that the area between the line and the x -axis is equally
distributed above and below the axis on the interval [0, 1].
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The range of S is R, since every number can be obtained as the image
under S of some polynomial in P1.
For example, if a is an arbitrary real number, then

∫ 1

0
a dx = [ax ]10 = a − 0 = a.
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Overview
Last week we introduced the notion of an abstract vector space, and we
saw that apparently different sets like polynomials, continuous functions,
and symmetric matrices all satisfy the 10 axioms defining a vector space.
We also discussed subspaces, subsets of a vector space which are vector
spaces in their own right. To any linear transformation between vector
spaces, one can associate two special subspaces:

the kernel
the range.

Today we’ll talk about linearly independent vectors and bases for abstract
vector spaces. The definitions are the same for abstract vector spaces as
for Euclidean space, so you may find it helpful to review the material
covered in 1013.

(Lay, §4.3, §4.4)
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Linear independence

Definition (Linear Independence)
A set of vectors {v1, v2, . . . , vp} in a vector space V is said to be linearly
independent if the vector equation

c1v1 + c2v2 + · · ·+ cpvp = 0 (1)

has only the trivial solution, c1 = c2 = · · · = cp = 0.

Definition
The set {v1, v2, . . . , vp} is said to be linearly dependent if it is not linearly
independent, i.e., if there are some weights c1, c2, . . . , cp, not all zero,
such that (1) holds.
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Here’s a recipe for proving a set of vectors {v1, v2, . . . , vp} is linearly
independent:

1 Write the equation

c1v1 + c2v2 + · · ·+ cpvp = 0.

2 Manipulate the equation to prove that all the ci = 0. Done!
3 If you find a different solution, then you’ve instead proven that the set

is linearly dependent.

!
If you start by assuming the ci are all zero, you can’t prove anything!
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Example 1
Show that the vectors 2x + 3, 4x2, and 1 + x are linearly independent in
P2.

1 Set a linear combination of the given vectors equal to 0:

a(2x + 3) + b(4x2) + c(1 + x) = 0.

2 Now manipulate the equation to see what coefficients are possible:

(3a + c) + (2a + c)x + 4bx2 = 0.

This implies

3a + c = 0
2a + c = 0

4b = 0

But the only solution to this system is a = b = c = 0, so the given
vectors are linearly independent.
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Span of a set
Example 2
Consider the plane H illustrated below:

Which of the following are valid descriptions of H?
(a) H = Span {v1, v2} (b) H = Span {v1, v3}
(c) H = Span {v2, v3} (d) H = Span {v1, v2 v3}
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The spanning set theorem
Definition
Let H be a subspace of a vector space V . An indexed set of vectors
B = {v1, v2, . . . , vp} in V is a basis for H if
(i) B is a linearly independent set, and
(ii) the subspace spanned by B equals H:

H = Span {v1, v2, . . . , vp}.

Theorem (The spanning set theorem)
Let S = {v1, v2, . . . , vp} be a set in V , and let H = Span {v1, v2, . . . , vp}.

(a) If the vector vk in S is a linear combination of the remaining vectors
of S, then the set formed from S by removing vk still spans H.

(b) If H 6= {0}, some subset of S is a basis for H.
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Example 3
Find a basis for P2 which is a subset of S = {1, x , 1 + x , x + 3, x2}.

First, let’s check if we have any hope: does S span P2?
The spanning set theorem says that if any vector in S is a linear
combination of the other vectors in S, we can remove it without changing
the span.

Span {1, x , 1 + x , x + 3, x2} = Span {1, x , x2}.
The set {1, x , x2} spans P2 and is linearly independent, so it’s a basis.
Other correct answers are {1, 1 + x , x2}, {1, x + 3, x2}, {x + 3, 1 + x , x2},
{x , x + 3, x2}, and {x , 1 + x , x2}.
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Bases for Nul A and Col A

Given any subspace V , it’s natural to ask for a basis of V .
When a subspace is defined as the null space or column space of a matrix,
there is an algorithm for finding a basis.
Recall the following example from the last lecture:

Example 4
Find the null space of the matrix

A =



1 5 −4 −3 1
0 1 −2 1 0
0 0 0 0 0


 .

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 8 / 18

Row reducing the matrix gives


1 5 −4 −3 1
0 1 −2 1 0
0 0 0 0 0


 r1→r1−5r2−−−−−−−→



1 0 6 −8 1
0 1 −2 1 0
0 0 0 0 0




This is equivalent to the system of equations

x1 + 6x3 − 8x4 + x5 = 0
x2 − 2x3 + x4 = 0

The general solutions is x1 = −6x3 + 8x4 − x5, x2 = 2x3 − x4. The free
variables are x3, x4 and x5.
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We express the general solution in vector form:




x1
x2
x3
x4
x5




=




−6x3 + 8x4 − x5
2x3 − x4

x3
x4
x5




= x3




−6
2
1
0
0




↑
u

+ x4




8
−1
0
1
0




↑
v

+ x5




−1
0
0
0
1




↑
w

We get a vector for each free variable, and these form a spanning set for
Nul A. In fact, this spanning set is linearly independent, so it’s a basis.
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A basis for Col A

Theorem
The pivot columns of a matrix A form a basis for Col A.

Although we won’t prove this is true, we’ll see why it should be plausible
using this example.

Example 5
We find a basis for Col A, where

A =
[
a1 a2 · · · a5

]

=




1 0 6 −3 0
4 3 33 −6 8
2 −1 9 −8 −4
−2 2 −6 10 2



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We row reduce A to get

A =




1 0 6 −3 0
4 3 33 −6 8
2 −1 9 −8 −4
−2 2 −6 10 2


→




1 0 6 −3 0
0 1 3 2 0
0 0 0 0 1
0 0 0 0 0


 = B

[
a1 a2 · · · a5

]
→

[
b1 b2 · · · b5

]

Note that
b3 = 6b1 + 3b2 and b4 = −3b1 + 2b2

We can check that

a3 = 6a1 + 3a2 and a4 = −3a1 + 2a2

Elementary row operations do not affect the linear dependence
relationships among the columns of the matrix.
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B =




1 0 6 −3 0
0 1 3 2 0
0 0 0 0 1
0 0 0 0 0




Looking at the columns of B, we can guess that b1, b2, b5 form a basis
for Col B.
We check

1 b2 is not a multiple of b1.
2 b5 is not a linear combination of b1 and b2.

Elementary row operations do not affect the linear dependence
relationships among the columns of the matrix.

Since {b1, b2, b5} is a basis for Col B,

{a1, a2, a5} is a basis for Col A.
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Review

1 To find a basis for Nul A, use elementary row operations to transform
[A 0] to an equivalent reduced row echelon form [B 0]. Use the row
reduced echelon form to find a parametric form of the general
solution to Ax = 0. If Nul A 6= {0}, the vectors found in this
parametric form of the general solution are automatically linearly
independent and form a basis for Nul A.

2 A basis for Col A is is formed from the pivot columns of A.
The matrix B determines the pivot columns, but it is important to
return to the matrix A.
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The unique representation theorem

Theorem (The Unique Representation Theorem)
Suppose that B = {v1, . . . , vn} is a basis for a vector space V . Then each
x ∈ V has a unique expansion

x = c1v1 + · · · cnvn (2)

where c1, . . . , cn are in Rn.

We say that the ci are the coordinates of x relative to the basis B, and we

write [x]B =




c1
...

cn


.
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Example 6
We found several bases for P2, including

B = {1, x , x2} and C = {1, x + 3, x2}.

Find the coordinates for 5 + 2x + 3x2 with respect to B and C.

We have
5 + 2x + 3x2 = 5(1) + 2(x) + 3(x2),

so [5 + 2x + 3x2]B =




5
2
3


.

Similarly,
5 + 2x + 3x2 = −1(1) + 2(x + 3) + 3(x2)

so [5 + 2x + 3x2]C =



−1
2
3


.
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Why is the Unique Representation Theorem true?

Suppose that B = {b1, . . . , bn} is a basis for V , and that we can write

x = c1b1 + · · ·+ cnbn

x = d1b1 + · · ·+ dnbn.

We’d like to show that this implies ci = di for all i . Subtract the second
line from the first to get

0 = (c1 − d1)b1 + · · ·+ (cn − dn)bn.

Since B is a basis, the bi are linearly independent. This implies all the
coefficients ci − di are equal to 0.
Thus, ci = di for all i .
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Coordinates
Coordinates give instructions for writing a given vector as a linear
combination of basis vectors.
In Rn, we’ve been implicitly using the standard basis E = {i, j, k}:




a
b
c


 = ai + bj + ck

.
However, we can express a vector in Rn in terms of any basis.

Example 7

Suppose B = {
[
1
1

]

E
,

[
1
−1

]

E
}. Then i = 1

2

[
1
1

]

E
+ 1

2

[
1
−1

]

E
, so

i =
[

1
21
2

]

B
.
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Overview
Last time we defined a basis of a vector space H:
Definition
The set {v1, · · · , vp} is a basis for H if

{v1, · · · , vp} is linearly independent, and
Span{v1, · · · , vp} = H

We recalled algorithms (§2.8, §4.3) to find a basis for the null space and
the column space of a matrix, and we stated the Unique Representation
Theorem:

Given a basis for H, every vector in H can be a written as a
linear combination of basis vectors in a unique way.

The coefficients of this expression are the coordinates of the vector with
respect to the basis.
Question
Given bases B and C for H, how are [x]B and [x]C related?

(Lay, §4.4, §4.7)
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Coordinates

Theorem (The Unique Representation Theorem)
Suppose that B = {v1, . . . , vn} is a basis for a vector space V . Then each
x ∈ V has a unique expansion

x = c1v1 + · · · cnvn (1)

where c1, . . . , cn are in R.

We say that the ci are the coordinates of x relative to the basis B, and we

write [x]B =




c1
...
cn


.

Coordinates give instructions for writing a given vector as a linear
combination of basis vectors.
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Different bases determine different coordinates...
Suppose B = {

[
1
0

]

E
,

[
1
2

]

E
}, and as always, E = {

[
1
0

]

E
,

[
0
1

]

E
}.

x x

e1 b1

b2

e2

Standard graph B-graph paper

If [x]B =
[
2
2

]
, then x = 2b1 + 2b2 = 2

[
1
0

]

E
+ 2

[
1
2

]

E
=
[
4
4

]

E

Similarly, [x]E =
[
4
4

]
, so x = 4e1 + 4e2 = 4

[
1
0

]

E
+ 4

[
0
1

]

E
=
[
4
4

]

E
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...but some things stay the same

Even though we use different coordinates to describe the same point with
respect to different bases, the structures we see in the vector space are
independent of the chosen coordinates.

Definition
A one-to-one and onto linear transformation between vector spaces is an
isomorphism. If there is an isomorphism T : V1 → V2, we say that V1 and
V2 are isomorphic.

Informally, we say that the vector space V is isomorphic to W if every
vector space calculation in V is accurately reproduced in W , and vice
versa.
For example, the property of a set of vectors being linearly independent
doesn’t depend on what coordinates they’re written in.
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Isomorphism

Theorem
Let B = {b1, b2, . . . , bn} be a basis for a vector space V . Then the
coordinate mapping P : V → Rn defined by P(x) = [x]B is an
isomorphism.

What does this theorem mean?
V and Rn are both vector spaces, and we’re defining a specific map that
takes vectors in V to vectors in Rn. This map

...is a linear transformation

...is one-to-one (i.e., if P(u) = 0, then u = 0)

...is onto (for every v ∈ Rn, there’s some u ∈ V with P(u) = v)

Every vector space with an n-element basis is isomorphic to Rn.
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Very Important Consequences

If B = {b1, . . . , bn} is a basis for a vector space V then

A set of vectors {u1, · · · , up} in V spans V if and only if the set of
the coordinate vectors {[u1]B, . . . , [up]B} spans Rn;

A set of vectors {u1, · · · , up} in V is linearly independent in V if and
only if the set of the coordinate vectors {[u1]B, . . . , [up]B} is linearly
independent in Rn.

An indexed set of vectors {u1, · · · , up} in V is a basis for V if and
only if the set of the coordinate vectors {[u1]B, . . . , [up]B} is a basis
for Rn.
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Theorem
If a vector space V has a basis B = {b1, . . . , bn}, then any set in V
containing more than n vectors is linearly dependent.

Theorem
If a vector space V has a basis consisting of n vectors, then every basis of
V must consist of exactly n vectors.

That is, every basis for V has the same number of elements. This number
is called the dimension of V and we’ll study it more tomorrow.
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Changing Coordinates (Lay §4.7)

When a basis B is chosen for V , the associated coordinate mapping onto
Rn defines a coordinate system for V . Each x ∈ V is identified uniquely by
its coordinate vector [x]B.

In some applications, a problem is initially described by using a basis B,
but by choosing a different basis C, the problem can be greatly simplified
and easily solved.

We want to study the relationship between [x]B, [x]C in Rn and the vector
x in V . We’ll try to solve this problem in 2 different ways.
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Changing from B to C coordinates: Approach #1

Example 1
Let B = {b1, b2} and C = {c1, c2} be bases for a vector space V , and
suppose that

b1 = −c1 + 4c2 and b2 = 5c1 − 3c2. (2)

Further, suppose that [x]B =
[
2
3

]
for some vector x in V . What is [x]C?

Let’s try to solve this from the definitions of the objects:

Since [x]B =
[
2
3

]
we have

x = 2b1 + 3b2. (3)
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The coordinate mapping determined by C is a linear transformation, so we
can apply it to equation (3):

[x]C = [2b1 + 3b2]C
= 2[b1]C + 3[b2]C

We can write this vector equation as a matrix equation:

[x]C =
[
[b1]C [b2]C

] [2
3

]
. (4)

Here the vector [bi ]C becomes the i th column of the matrix.
This formula gives us [x]C once we know the columns of the matrix. But
from equation (2) we get

[b1]C =
[
−1
4

]
and [b2]C =

[
5
−3

]

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 10 / 29

So the solution is

[x]C =
[
−1 5
4 −3

] [
2
3

]
=
[
13
−1

]
or

[x]C = P
C←B [x]B

where P
C←B =

[
−1 5
4 −3

]
is called the change of coordinate matrix from

basis B to C.

Note that from equation (4), we have

P
C←B =

[
[b1]C [b2]C

]
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The argument used to derive the formula (4) can be generalised to give
the following result.

Theorem (2)

Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases for a vector space V .
Then there is a unique n × n matrix P

C←B such that

[x]C = P
C←B [x]B. (5)

The columns of P
C←B are the C-coordinate vectors of the vectors in the

basis B. That is

P
C←B =

[
[b1]C [b2]C · · · [bn]C

]
. (6)
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The matrix P
C←B in Theorem 12 is called the change of coordinate matrix

from B to C.
Multiplication by P

C←B converts B-coordinates into C-coordinates.

Of course,
[x]B = P

B←C [x]C ,

so that
[x]B = P

B←C
P
C←B [x]B,

whence P
B←C and P

C←B are inverses of each other.
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Summary of Approach #1

The columns of P
C←B are the C-coordinate vectors of the vectors

in the basis B.
Why is this true, and what’s a good way to remember this?
Suppose B = {b1, . . . , bn} and C = {c1, . . . , cn} are bases for a vector
space V . What is [b1]B?

[b1]B =




1
0
...
0




.

We have
[b1]C = P

C←B[b1]B,

so the first column of P
C←B needs to be the vector for b1 in C coordinates.
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Example
Example 2
Find the change of coordinates matrices P

C←B and P
B←C for the bases

B = {1, x , x2} and C = {1 + x , x + x2, 1 + x2}

of P2.

Notice that it’s “easy" to write a vector in C in B coordinates.

[1 + x ]B =



1
1
0


 , [x + x2]B =



0
1
1


 , [1 + x2]B =



1
0
1


 .

Thus,

P
B←C =



1 0 1
1 1 0
0 1 1


 .
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Example 3 (continued)
Find the change of choordinates matrices P

C←B and P
B←C for the bases

B = {1, x , x2} and C = {1 + x , x + x2, 1 + x2}

of P2.

Since we just showed

P
B←C =



1 0 1
1 1 0
0 1 1


 ,

we have

P
C←B = P

B←C
−1 =



1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2


 .

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 16 / 29

Suppose now that we have a polynomial p(x) = 1+ 2x − 3x2 and we want
to find its coordinates relative to the C basis.
We have

[p]B =



1
2
−3




and so

[p]C = P
C←B [p]B

=



1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2






1
2
−3




=



3
−1
−2


 .
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Changing from B to C coordinates: Approach #2

As we just saw, it’s relatively easy to find a change of basis matrix from a
standard basis (e.g., {i, j, k} or {1, x , x2, x3}) to a non-standard basis.
We can use this fact to find a change of basis matrix between two
non-standard bases, too. Suppose that E is a standard basis and B and C
are non-standard bases for some vector space.
To change from B to C coordinates, first change from B to E coordinates
and then change from E to C coordinates:

P
C←Bx = P

C←E

(
P
E←Bx

)
.

Since this is true for all x, we can write the matrix P
C←B as a product of two

matrices which are easy to find:

P
C←B = P

C←E
P
E←B.
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Example 4
Consider the bases B = {b1, b2} and C = {c1, c2}, where

b1 =
[
7
−2

]
, b2 =

[
2
−1

]
, c1 =

[
4
1

]
, c2 =

[
5
2

]
.

We want to find the change of coordinate matrix P
C←B using the method

described above.

We have

P
E←B =

[
7 2
−2 −1

]
, P

E←C =
[
4 5
1 2

]
and P

E←C
−1 = 1

3

[
2 −5
−1 4

]

Hence

P
C←B = P

E←C
−1 P
E←B = 1

3

[
2 −5
−1 4

] [
7 2
−2 −1

]
=
[
8 3
−5 −2

]
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Examples: Approach #1

Example 5
Consider the bases B = {b1, b2} and C = {c1, c2}, where

b1 =
[
−1
8

]
, b2 =

[
1
−5

]
, c1 =

[
1
4

]
, c2 =

[
1
1

]
.

We want to find the change of coordinate matrix from B to C, and from C
to B.
Solution The matrix P

C←B involves the C-coordinate vectors of b1 and b2.
Suppose that

[b1]C =
[
x1
x2

]
and [b2]C =

[
y1
y2

]
.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 20 / 29

From the definition

b1 = x1c1 + x2c2 =
[
c1 c2

] [x1
x2

]

and
b2 = y1c1 + y2c2 =

[
c1 c2

] [y1
y2

]

To solve these systems simultaneously we augment the coefficient matrix
with b1 and b2 and row reduce:

[
c1 c2

... b1 b2

]
=

[
1 1
4 1

∣∣∣∣∣
−1 1
8 −5

]

rref−−→
[
1 0
0 1

∣∣∣∣∣
3 −2
−4 3

]
. (7)
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This gives

[b1]C =
[
3
−4

]
and [b2]C =

[
−2
3

]
,

and
P
C←B =

[
[b1]C [b2]C

]
=
[
3 −2
−4 3

]

You may notice that the matrix P
C←B already appeared in (7). This is

because the first column of P
C←B results from row reducing[

c1 c2
... b1

]
to
[
I ... [b1]C

]
, and similarly for the second column of

P
C←B. Thus [

c1 c2
... b1 b2

] rref−−→
[
I ... P

C←B

]
.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 22 / 29

Example 6
Consider the bases B = {b1, b2} and C = {c1, c2}, where

b1 =
[
7
−2

]
, b2 =

[
2
−1

]
, c1 =

[
4
1

]
, c2 =

[
5
2

]
.

We want to find the change of coordinate matrix from B to C, and from C
to B.
We use the following relationship:

[
c1 c2

... b1 b2

] rref−−→
[
I ... P

C←B

]
.

Here
[
c1 c2

... b1 b2

]
=
[
4 5
1 2

∣∣∣∣∣
7 2
−2 −1

]
rref−−→

[
1 0
0 1

∣∣∣∣∣
8 3
−5 −2

]
.
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This gives
P
C←B =

[
8 3
−5 −2

]
.

Further
P
B←C =

(
P
C←B

)−1
=
[
2 3
−5 −8

]
.
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Example 7
In M2×2 let B be the basis

{
E11 =

[
1 0
0 0

]
,E21 =

[
0 0
1 0

]
,E12 =

[
0 1
0 0

]
,E22 =

[
0 0
0 1

]}

and let C be the basis
{
A =

[
1 0
0 0

]
,B =

[
1 1
0 0

]
,C =

[
1 1
1 0

]
,D =

[
1 1
1 1

]}

We find the change of basis matrix P
C←B and verify that [X ]C = P

C←B [X ]B

for X =
[
1 2
3 4

]
.
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Solution To solve this problem directly we must find the coordinate vectors
of B with respect to C.

This would usually involve solving a system of 4 linear equations of the
form E11 = aA + bB + cC + dD where we need to find a, b, c and d .

We can avoid that in this case since we can find the required coefficients
by inspection:
Clearly E11 = A,E21 = −B + C ,E12 = −A + B and E22 = −C + D.

Thus

[E11]C =




1
0
0
0


 , [E21]C =




0
−1
1
0


 , [E12]C =




−1
1
0
0


 , [E22]C =




0
0
−1
1


 .
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From this we have

P
C←B =

[
[E11]C [E21]C [E12]C [E22]C

]

=




1 0 −1 0
0 −1 1 0
0 1 0 −1
0 0 0 1




For X =
[
1 2
3 4

]
,

X = 1E11 + 3E21 + 2E12 + 4E22

and [X ]B =




1
3
2
4


.
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We now want to verify that [X ]C = P
C←B [X ]B for X =

[
1 2
3 4

]
. From our

calculations

[X ]C = P
C←B [X ]B

=




1 0 −1 0
0 −1 1 0
0 1 0 −1
0 0 0 1







1
3
2
4




=




−1
−1
−1
4


 .

This is the coordinate vector of X with respect to the basis C.
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We check this as follows:

Since [X ]C =




−1
−1
−1
4


 this means that X should be given by

−A− B − C + 4D:

−A− B − C + 4D = −
[
1 0
0 0

]
−
[
1 1
0 0

]
−
[
1 1
1 0

]
+ 4

[
1 1
1 1

]

=
[
1 2
3 4

]
= X

as it should be.
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Overview

Given two bases B and C for the same vector space, we saw yesterday how
to find the change of coordinates matrices P

C←B nd P
B←C. Such a matrix is

always square, since every basis for a vector space V has the same number
of elements. Today we’ll focus on this number —the dimension of V—
and explore some of its properties.

From Lay, §4.5, 4.6
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Dimension

Definition
If a vector space V is spanned by a finite set, then V is said to be finite
dimensional.

The dimension of V , (written dimV ), is the number of vectors in a basis
for V .

The dimension of the zero vector space {0} is defined to be zero.

If V is not spanned by a finite set, then V is said to be infinite
dimensional.
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Example 1
1 The standard basis for Rn contains n vectors, so dimRn = n.
2 The standard basis for P3, which is {1, t, t2, t3}, shows that

dimP3 = 4.
3 The vector space of continuous functions on the real line is infinite

dimensional.
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Dimension and the coordinate mapping

Recall the theorem we saw yesterday:

Theorem
Let B = {b1,b2, . . . ,bn} be a basis for a vector space V . Then the
coordinate mapping P : V → Rn defined by P(x) = [x]B is an
isomorphism.

(Recall that an isomorphism is a linear transformation that’s both
one-to-one and onto.)
This means that every vector space with an n-element basis is isomorphic
to Rn. We can now rephrase this theorem in new language:

Theorem
Any n-dimensional vector space is isomorphic to Rn.
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Dimensions of subspaces of R3

Example 2
The 0 - dimensional subspace contains only the zero vector





0
0
0







.

If u 6= 0, then Span {u} is a 1 - dimensional subspace. These
subspaces are lines through the origin.
If u and v are linearly independent vectors in R3, then Span {u, v} is
a 2 - dimensional subspace. These subspaces are planes through
the origin.
If u, v and w are linearly independent vectors in R3, then
Span {u, v,w} is a 3 - dimensional subspace. This subspace is R3

itself.
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Theorem
Let H be a subspace of a finite dimensional vector space V . Then any
linearly independent set in H can be expanded (if necessary) to form a
basis for H.
Also, H is finite dimensional and

dimH ≤ dimV .
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Example 3

Let H = Span







1
0
1


 ,



1
1
0







. Then H is a subspace of R3 and

dimH < dimR3. Furthermore, we can expand the given spanning set for

H







1
0
1


 ,



1
1
0








to






1
0
1


 ,



1
1
0


 ,



0
0
1








to form a basis for R3.

Question
Can you find another vector that you could have added to the spanning set
for H to form a basis for R3?
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When the dimension of a vector space or subspace is known, the search for
a basis is simplified.

Theorem (The Basis Theorem)
Let V be a p-dimensional space, p ≥ 1.

1 Any linearly independent set of exactly p elements in V is a basis for
V .

2 Any set of exactly p elements that spans V is a basis for V .
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Example 4
Schrödinger’s equation is of fundamental importance in quantum
mechanics. One of the first problems to solve is the one-dimensional
equation for a simple quadratic potential, the so-called linear harmonic
oscillator.
Analysing this leads to the equation

d2y
dx2 − 2x dydx + 2ny = 0

where n = 0, 1, 2, ...
There are polynomial solutions, the Hermite polynomials. The first few are

H0(x) = 1 H3(x) = −12x + 8x3

H1(x) = 2x H4(x) = 12− 48x3 + 16x4

H2(x) = −2 + 4x2 H5(x) = 120x − 160x3 + 32x5

We want to show that these polynomials form a basis for P5.
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Writing the coordinate vectors relative to the standard basis for P5 we get



1
0
0
0
0
0




,




0
2
0
0
0
0




,




−2
0
4
0
0
0




,




0
−12
0
8
0
0




,




12
0
0
−48
16
0




,




0
120
0
−160
0
32




.

This makes it clear that the vectors are linearly independent. Why?
Since dimP5 = 6 and there are 6 polynomials that are linearly
independent, the Basis Theorem shows that they form a basis for P5.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 10 / 29

The dimensions of Nul A and Col A
Recall that last week we saw explicit algorithms for finding bases for the
null space and the column space of a matrix A.

1 To find a basis for Nul A, use elementary row operations to transform
[A 0] to an equivalent reduced row echelon form [B 0]. Use the row
reduced echelon form to find a parametric form of the general
solution to Ax = 0. If Nul A 6= {0}, the vectors found in this
parametric form of the general solution are automatically linearly
independent and form a basis for Nul A.

2 A basis for Col A is is formed from the pivot columns of A.
The matrix B determines the pivot columns, but it is important to
return to the matrix A.

Dimension of Nul A and Col A
The dimension of Nul A is the number of free variables in the equation
Ax = 0.
The dimension of Col A is the number of pivot columns in A.
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Example 5
Given the matrix

A =




1 −6 9 10 −2
0 1 2 −4 5
0 0 0 5 1
0 0 0 0 0


 ,

what are the dimensions of the null space and column space?

There are three pivots and two free variables, so dim(Nul A) = 2 and
dim(Col A) = 3.
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Example 6
Given the matrix

A =



1 −1 0
0 4 7
0 0 5


 ,

there are three pivots and no free variables, dim(Nul A) = 0 and
dim(Col A) = 3.
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The rank theorem

As before, let A be a matrix and let B be its reduced row echelon form

dimCol A = # of pivots of A = # of pivot columns of B

Definition
The rank of a matrix A is the dimension of the column space of A.

dimNul A = # of free variables of B

= # of non-pivot columns of B.

Compare the two red boxes. What does this tell about the relationship
between the dimensions of the null space and column space of matrix?
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Theorem
If A is an m × n matrix, then

Rank A + dimNul A = n.

Proof.
{

number of
pivot columns

}
+

{
number of

nonpivot columns

}
=

{
number of
columns

}
.
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Examples

Example 7
If a 6× 3 matrix A has rank 3, what can we say about dimNul A,
dimCol A and Rank A?

Rank A + dimNul A = 3.
Since A only has three columns, and and all three are pivot columns,
there are no free variables in the equation Ax = 0. Hence
dimNul A = 0.
dimCol A = Rank A = 3.
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The row space of a matrix

The null space and the column space are the fundamental subspaces
associated to a matrix, but there’s one other natural subspace to consider:

Definition
The row space Row A of an m × n matrix A is the subspace of Rn

spanned by the rows of A.
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Example 8
For the matrix A given by

A =




1 −6 9 10 −2
3 1 2 −4 5
−2 0 −1 5 1
4 −3 1 0 6


 ,

we can write

r1 = [1,−6, 9, 10,−2]
r2 = [3, 1, 2,−4, 5]
r3 = [−2, 0,−1, 5, 1]
r4 = [4,−3, 1, 0, 6

The row space of A is the subspace of R5 spanned by {r1, r2, r3, r4}.

(Note that we’re writing the vectors ri as rows, rather than columns, for
convenience.)
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A basis for Row B
Theorem
Suppose a matrix B is obtained from a matrix A by row operations. Then
Row A = Row B. If B is an echelon form of A, then the non-zero rows of
B form a basis for Row B.

Compare this to our procedure for finding a basis for Col A. Notice that
it’s simpler: after row reducing, we don’t need to return to the original
matrix to find our basis!
Proof.
If a matrix B is obtained from a matrix A by row operations, then the rows
of B are linear combinations of those of A, so that Row B ⊆ Row A.
But row operations are reversible, which gives the reverse inclusion so that
Row A = Row B.
In fact if B is an echelon form of A, then any non-zero row is linearly
independent of the rows below it (because of the leading non-zero entry),
and so the non-zero rows of B form a basis for Row B = Row A.
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The Rank Theorem –Updated!

Theorem
For any m × n matrix A, Col A and Row A have the same dimension.
This common dimension, the rank of A, is equal to the number of pivot
positions in A and satisfies the equation

Rank A + dimNul A = n.

This additional statement in this theorem follows from our process for
finding bases for Row A and Col A:
Use row operations to replace A with its reduced row echelon form. Each
pivot determines a vector (a column of A) in the basis for Col A and a
vector (a row of B) in the basis for Row A.

Note also Rank A = Rank AT .
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Example 9
Suppose a 4× 7 matrix A has 4 pivot columns.

Col A ⊆ R4 and dimCol A = 4. So Col A = R4.
On the other hand, Row A ⊆ R7, so that even though
dimRow A = 4, Row A 6= R4.

Example 10
If A is a 6× 8 matrix, then the smallest possible dimension of Nul A is 2.
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Example 11

A =



1 2 2 −1
3 6 5 0
1 2 1 2


 rref−−→



1 2 0 5
0 0 1 −3
0 0 0 0




Thus, {r1 = (1, 2, 0, 5), r2 = (0, 0, 1,−3)} is a basis for Row A.
(Note that these are rows of rref (A), not rows of A.)

Pivots are in columns 1 and 3 of rref (A), so that







1
3
1


 ,



2
5
1








is a basis

for Col A. (Note these are columns of A.)
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Example 12

A =




2 −3 6 2 5
−2 3 −3 −3 −4
4 −6 9 5 9
−2 3 3 −4 1




ref−−→ B =




2 −3 6 2 5
0 0 3 −1 1
0 0 0 1 3
0 0 0 0 0




The number of pivots in B is three, so dimCol A = 3 and a basis for Col A
is given by 







2
−2
4
−2


 ,




6
−3
9
3


 ,




2
−3
5
−4








A basis for Row A is given by

{(2,−3, 6, 2, 5), (0, 0, 3,−1, 1), (0, 0, 0, 1, 3)}.

From B we can see that there are two free variables for the equation
Ax = 0, so dimNul A = 2. How would you find a basis for this subspace?
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Applications to systems of equations

The rank theorem is a powerful tool for processing information about
systems of linear equations.

Example 13
Suppose that the solutions of a homogeneous system of five linear
equations in six unknowns are all multiples of one nonzero solution. Will
the system necessarily have a solution for every possible choice of
constants on the right hand side of the equations?

Solution The hardest thing to figure out is
What is the question asking?

A non-homogeneous system of equations Ax = b always has a solution if
and only if the dimension of the column space of the matrix A is the same
as the length of the columns.
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In this case if we think of the system as Ax = b, then A is a 5× 6 matrix,
and the columns have length 5: each column is a vector in R5.
The question is asking

Do the columns span R5?

or equivalently,
Is the rank of the column space equal to 5?

First note that dimNul A = 1. We use the equation:

Rank A + dimNul A = 6

to deduce that Rank A = 5.
Hence the dimension of the column space of A is 5, Col A = R5 and the
system of non-homogeneous equations always has a solution.
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Example 14
A homogeneous system of twelve linear equations in eight unknowns has
two fixed solutions that are not multiples of each other, and all other
solutions are linear combinations of these two solutions. Can the set of all
solutions be described with fewer than twelve homogeneous linear
equations? If so, how many?

Considering the corresponding matrix system Ax = 0, the key points are
A is a 12× 8 matrix.
dimNul A = 2
Rank A + dimNul A = 8
What is the rank of A?
How many equations are actually needed?
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Example 15

Let A =




2 −2 0
−2 2 0
1 2 0


. The following are easily checked:

Nul A is the z-axis.
Row A is the xy -plane.
Col A is the plane whose equation is x + y = 0.
Nul AT is the set of all multiples of (1, 1, 0).
Nul A and Row A are perpendicular to each other.
Col A and Nul AT are also perpendicular.
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Theorem (Invertible Matrix Theorem ctd)
Let A be an n × n matrix. Then the following statements are each
equivalent to the statement that A is an invertible matrix.
m. The columns of A form a basis of Rn.
n. Col A = Rn.
o. dimCol A = n.
p. Rank A = n.
q. Nul A = {0}.
r. dimNul A = 0.

(The numbering continues the statement of the Invertible Matrix Theorem
from Lay §2.3.)
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Summary

1 Every basis for V has the same number of elements. This number is
called the dimension of V .

2 If V is n-dimensional, V is isomorphic to Rn.
3 A linearly independent list of vectors in V can be extended to a basis

for V .
4 If the dimension of V is n, any linearly independent list of n vectors is

a basis for V .
5 If the dimension of V is n, any spanning set of n vectors is a basis for

V .
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Applications to Markov chains

From Lay, §4.9
(This section is not examinable on the mid-semester exam.)
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Theory and definitions

Markov chains are useful tools in certain kinds of probabilistic models.
They make use of matrix algebra in a powerful way. The basic idea is the
following: suppose that you are watching some collection of objects that
are changing through time.

Assume that the total number of objects is not changing, but rather
their “states" (position, colour, disposition, etc) are changing.
Further, assume that the proportion of state A objects changing to
state B is constant and these changes occur at discrete stages, one
after the next.

Then we are in a good position to model changes by a Markov chain.
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As an example, consider the three storey aviary at a local zoo which
houses 300 small birds. The aviary has three levels, and the birds spend
their day flying around from one favourite perch to the next. Thus at any
given time the birds seem to be randomly distributed throughout the three
levels, except at feeding time when they all fly to the bottom level.

Our problem is to determine what the probability is of a given bird being
at a given level of the aviary at a given time. Of course, the birds are
always flying from one level to another, so the bird population on each
level is constantly fluctuating. We shall use a Markov chain to model this
situation.
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Consider a 3× 1 matrix

p =



p1
p2
p3




where p1 is the percentage of total birds on the first level, p2 is the
percentage on the second level, and p3 is the percentage on the third level.
Note that p1 + p2 + p3 = 1 = 100%.
After 5 min we have a new matrix

p′ =



p′

1
p′

2
p′

3




giving a new distribution of the birds.
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We shall assume that the change from the p matrix to the p′ matrix
is given by a linear operator on R3.
In other words there is a 3× 3 matrix T , known as the transition
matrix for the Markov chain, for which Tp = p′.
After another 5 minutes we have another distribution p′′ = Tp′

(using the same matrix T ), and so forth.
The same matrix T is used since we are assuming that the probability of a
bird moving to another level is independent of time.
In other words, the probability of a bird moving to a particular level
depends only on the present state of the bird, and not on any past states
—it’s as if the birds had no memory of their past states.
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This type of model is known as a finite Markov Chain.
A sequence of trials of an experiment is a finite Markov Chain if it has the
following features:

the outcome of each trials is one of a finite set of outcomes
(such as {level 1, level 2, level 3} in the aviary example);
the outcome of one trial depends only on the immediately preceding
trial.

In order to give a more formal definition we need to introduce the
appropriate terminology.
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Definition

A vector p =



p1
...
pn


 with nonnegative entries that add up to 1 is called a

probability vector.

Definition
A stochastic matrix is a square matrix whose columns are probability
vectors.

The transition matrix T described above that takes the system from one
distribution to another is a stochastic matrix.
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Definition
In general, a finite Markov chain is a sequence of probability vectors
x0, x1, x2, . . . together with a stochastic matrix T , such that

x1 = Tx0, x2 = Tx1, x3 = Tx2, · · ·

We can rewrite the above conditions as a recurrence relation

xk+1 = Txk , for k = 0, 1, 2, . . .

The vector xk is often called a state vector.

More generally, a recurrence relation of the form

xk+1 = Axk for k = 0, 1, 2, . . .

where A is an n × n matrix (not necessarily a stochastic matrix), and the
xks are vectors in Rn (not necessarily probability vector) is called a first
order difference equation.
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Examples

Example 1
We return to the aviary example. Assume that whenever a bird is on any
level of the aviary, the probability of that bird being on the same level 5
min later is 1/2. If the bird is on the first level, the probability of moving
to the second level in 5 min is 1/3 and of moving to the third level in 5
min is 1/6. For a bird on the second level, the probability of moving to
either the first or third level is 1/4. Finally for a bird on the third level, the
probability of moving to the second level is 1/3 and of moving to the first
is 1/6.

We want to find the transition matrix for this example and use it to
determine the distribution after certain periods of time.
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From the information given, we derive the following matrix as the
transition matrix:

From:
lev 1 lev 2 lev 3 To:

T =



1/2 1/4 1/6
1/3 1/2 1/3
1/6 1/4 1/2




lev 1
lev 2
lev 3

Note that in each column, the sum of the probabilities is 1.

Using T we can now compute what happens to the bird distribution at
5-min intervals.
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Suppose that immediately after breakfast all the birds are in the dining
area on the first level. Where are they in 5 min? The probability matrix at
time 0 is

p =



1
0
0




According to the Markov chain model the bird distribution after 5 min is

Tp =



1/2 1/4 1/6
1/3 1/2 1/3
1/6 1/4 1/2






1
0
0


 =



1/2
1/3
1/6




After another 5 min the bird distribution becomes

T



1/2
1/3
1/6


 =



13/36
7/18
1/4



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Example 2
We investigate the weather in the Land of Oz. to illustrate the principles
without too much heavy calculation.) The weather here is not ver good:
there are never two fine days in a row.
If the weather on a particular day is known, we cannot predict exactly
what the weather will be the next day, but we can predict the probabilities
of various kinds of weather. We will say that there are only three kinds:
fine, cloudy and rain.
Here is the behaviour:

After a fine day, the weather is equally likely to be cloudy or rain.
After a cloudy day, the probabilities are 1/4 fine, 1/4 cloudy and 1/2
rain.
After rain, the probabilities are 1/4 fine, 1/2 cloudy and 1/4 rain.
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We aim to find the transition matrix and use it to investigate some of the
weather patterns in the Land of Oz.

The information gives a transition matrix:

From:
fine cloudy rain To:

T =




0 1/4 1/4
1/2 1/4 1/2
1/2 1/2 1/4




fine
cloudy
rain

Suppose on day 0 that the weather is rainy. That is

x0 =



0
0
1


 .
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Then the probabilities for the weather the next day are

x1 = Tx0 =




0 1/4 1/4
1/2 1/4 1/2
1/2 1/2 1/4






0
0
1


 =



1/4
1/2
1/4


 ,

and for the next day

x2 = Tx1 =




0 1/4 1/4
1/2 1/4 1/2
1/2 1/2 1/4






1/4
1/2
1/4


 =



3/16
3/8
7/16




If we want to find the probabilities for the weather for a week after the
initial rainy day, we can calculate like this

x7 = Tx6 = T 2x5 = T 3x4 = . . . = T 7x0.
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Predicting the distant future

The most interesting aspect of Markov chains is the study of the chain’s
long term behaviour.

Example 3
Consider a system whose state is described by the Markov chain
xk+1 = Txk , for k = 0, 1, 2, . . ., where T is the matrix

T =




.7 .2 .2
0 .2 .4
.3 .6 .4


 and x0 =



0
0
1


 .

We want to investigate what happens to the system as time passes.
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To do this we compute the state vector for several different times. We find

x1 = Tx0 =




.7 .2 .2
0 .2 .4
.3 .6 .4






0
0
1


 =



0.2
0.4
0.4




x2 = Tx1 =




.7 .2 .2
0 .2 .4
.3 .6 .4






0.2
0.4
0.4


 =



0.3
0.24
0.46




x3 = Tx2 =




.7 .2 .2
0 .2 .4
.3 .6 .4






0.3
0.24
0.46


 =



0.350
0.232
0.416



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Subsequent calculations give

x4 =



0.3750
0.2136
0.4114


 , x5 =



0.38750
0.20728
0.40522


 ,

x6 =



0.393750
0.203544
0.4027912


 , x7 =



0.3968750
0.2017912
0.4013338


 ,

x8 =



0.39843750
0.20089176
0.4006704


 , x9 =



0.399218750
0.200448848
0.400034602


 ,

. . . , x20 =



0.3999996185
0.2000002179
0.4000001634


 .
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These vectors seem to be approaching

q =



0.4
0.2
0.4


 .

Observe the following calculation:

Tq =




.7 .2 .2
0 .2 .4
.3 .6 .4






0.4
0.2
0.4


 =



0.4
0.2
0.4


 .

This calculation is exact, with no rounding error. When the system is in
state q there is no change in the system from one measurement to the
next.
We might also note that T 20 is given by



0.4000005722 0.3999996185 0.3999996185
0.1999996730 0.2000002180 0.2000002179
0.3999997548 0.4000001635 0.4000001634


 .
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Example 4
For the weather in the Land of Oz, where

T =



0 0.25 0.25
0.5 0.25 0.5
0.5 0.5 0.25


 , x0 =



0
0
1




we have already calculated

x7 =



0.2000122070
0.4000244140
0.3999633789


 .

We want to look further ahead.
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A further calculation gives

x15 =



0.2000000002
0.4000000003
0.3999999994


 .

This suggests that

q =



0.2
0.4
0.4


 .

An easy calculation shows that Tq = q.
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Steady-state vectors
Definition
If T is a stochastic matrix, then a steady state vector for T is a
probability vector q such that

Tq = q.

A steady state vector q for T represents an equilibrium of the system
modeled by the Markov Chain with transition matrix T . If at time 0 the
system is in state q (that is if we have x0 = q) then the system will remain
in state q at all times (that is we will have xn = q for every n ≥ 0).
It can be shown that every stochastic matrix has a steady state vector. In
the examples in Section 2, the vector q is the steady state vector.
To find a suitable vector q, we want to solve the equation Tx = x.

Tx− x = 0
Tx− Ix = 0
(T − I)x = 0
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In the case n = 2, the problem is easily solved directly. Suppose first that
all the entries of the transition matrix T are non-zero. Then T must be of
the form

T =
[
1− p q
p 1− q

]
for 0 < p, q < 1.

Then
T − I =

[
−p q
p −q

]
rref−−→

[
−p q
0 0

]
.

So when solving (T − I)x = 0, x2 is free and px1 = qx2, so that

q = 1
p + q

[
q
p

]

is a steady state probability vector. Note that in this particular case the
steady state vector is unique.
The case when one or more of the entries of T are zero is handled in a
similar way. Note that if p = q = 0 then T is the identity matrix for which
every probability vector is clearly a steady state vector.
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A stochastic matrix does not necessarily have a unique steady state vector.
In other words, a system modeled by a Markov Chain can have more than
one equilibrium.
For example the probability vectors



1
0
0


 ,




0
1/2
1/2


 ,



1/3
1/3
1/3




are all steady state vectors for the stochastic matrix

P =



1 0 0
0 0 1
0 1 0


 .

Indeed all the probability vectors


a
b
b


 with a, b ≥ 0 and a + 2b = 1

are steady state vectors for the above matrix T .
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We would like to have some conditions on P that ensure that T has a
unique steady state vector q and that the Markov Chain xn associated to T
converges to the steady state q, independently of the initial state x0. For
this kind of Markov chains, we can easily predict the long term behaviour.
It turns out that there is a large set of stochastic matrices for which long
range predictions are possible. Before stating the main theorem we have to
give a definition.

Definition
A stochastic matrix T is regular if some matrix power T k contains only
strictly positive entries.

In other words, if the transition matrix of a Markov chain is regular then,
for some k, it is possible to go from any state to any state (including
remaining in the current state) in exactly k steps.
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For the transition matrix showing the probabilities for change in the
weather in the Land of Oz, we have

T =




0 1/4 1/4
1/2 1/4 1/2
1/2 1/2 1/4




However,

T 2 =



1/4 3/16 3/16
3/8 7/16 3/8
3/8 3/8 7/16




which shows that T is a regular stochastic matrix.
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Here’s an example of a stochastic matrix that is not regular:

T =
[
0 1
1 0

]

Not only does T have some zero entries , but also

T 2 =
[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
= I2

T 3 = TT 2 = TI2 = T

so that
T k = T if k is odd, T k = I2 if k is even.

Thus any matrix power T k has some entries equal to zero.
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Theorem
If T is an n × n regular stochastic matrix, then T has a unique steady
state vector q. The entries of q are strictly positive
Moreover, if x0 is any initial probability vector and xk+1 = Txk for
k = 0, 1, 2, . . . then the Markov chain {xk} converges to q as k →∞.
Equivalently, the steady state vector q is the limit of T kx0 when k →∞
for any probability vector x0.

Notice that if T = [p1 . . . pn], where p1, . . . , pn are the columns of T ,
then taking x0 = ei , where ei is the ith vector of the standard basis we
have that

x1 = Tx0 = Tei = pi

so x1 is the ith column of T .
Similarly xk = T kx0 = T kei is the ith column of T k .
The previous theorem implies that T kei → q for every i = 1, . . . , n when
k →∞, that is every column of T k approaches the limiting vector q when
k →∞.
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Examples
Example 5

Let T =
[
0.8 0.5
0.2 0.5

]
. We want to find the steady state vector associated

with T .

We want to solve (T − I)x = 0:

T − I =
[
−0.2 0.5
0.2 −0.5

]
→ R =

[
1 −5/2
0 0

]

The homogeneous system having the reduced row echelon matrix R as
coefficient matrix is x1 − (5/2)x2 = 0. Taking x2 as a free variable, the
general solution is x1 = (5/2)t, x2 = t.
For x to be a probability vector we also require x1 + x2 = 1.
Put x1 = (5/2)t, x2 = t, then x1 + x2 = 1 becomes (5/2)t + t = 1.

This gives t = 2/7 = x2 and x1 = 5/7, so x =
[
5/7
2/7

]
.
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An alternative Solution
If we consider T =

[
0.8 0.5
0.2 0.5

]
as a matrix of the form

[
1− p q
p 1− q

]

we can identify p = 0.2 and q = 0.5. The solution is then given by

p = 1
p + q

[
q
p

]
= 1

0.7

[
0.5
0.2

]
=

[
5/7
2/7

]
.
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Example 6
A psychologist places a rat in a cage with three compartments, as shown
in the diagram.

1
2

3

The rat has been trained to select a door at random whenever a bell is
rung and to move through it into the next compartment.
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Example (continued)
From the diagram, if the rat is in space 1, there are equal probabilities that
it will go to either space 2 or 3 (because there is just one opening to each
of these spaces).

On the other hand, if the rat is in space 2, there is one door to space 1,
and 2 to space 3, so the probability that it will go to space 1 is 1/3, and to
space 3 is 2/3.

The situation is similar if the rat is in space 3. Wherever the rat is there is
0 probability that the rat will stay in that space.
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The transition matrix is

P =




0 1/3 1/3
1/2 0 2/3
1/2 2/3 0


 .

It is easy to check that P2 has entries which are strictly positive, so P is a
regular stochastic matrix.
It is also easy to see that a rat can get from any room to any other room
(including the one it starts from) through one or more moves.
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To find the steady stat vector we need to solve (P − I)x = 0, that is we
need to find the null space of P − I.

P − I =



−1 1/3 1/3
1/2 −1 2/3
1/2 2/3 −1




rref−−→



1 0 −2/3
0 1 −1
0 0 0



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Hence if x =



x1
x2
x3


, then x3 = t is free, x1 = 2

3 t, x2 = t. Since x must be a

probability vector, we need 1 = x1 + x2 + x3 = 8
3 t. Thus, t = 3

8 and

x =



1/4
3/8
3/8


 .

In the long run, the rat spends 1
4 of its time in space 1, and 3

8 of its time
in each of the other two spaces.
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Eigenvectors and eigenvalues

From Lay, §5.1
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Overview
Most of the material we’ve discussed so far falls loosely under two
headings:

geometry of Rn, and
generalisation of 1013 material to abstract vector spaces.

Today we’ll begin our study of eigenvectors and eigenvalues. This is
fundamentally different from material you’ve seen before, but we’ll draw
on the earlier material to help us understand this central concept in linear
algebra. This is also one of the topics that you’re most likely to see
applied in other contexts.
Question
If you want to understand a linear transformation, what’s the smallest
amount of information that tells you something meaningful?

This is a very vague question, but studying eigenvalues and eigenvectors
gives us one way to answer it.

From Lay, §5.1
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Definition
An eigenvector of an n × n matrix A is a non-zero vector x such that
Ax = λx for some scalar λ.
An eigenvalue of an n × n matrix A is a scalar λ such that Ax = λx has a
non-zero solution; such a vector x is called an eigenvector corresponding to
λ.
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Example 1

Let A =
[
3 0
0 2

]
.

Then any nonzero vector
[

x
0

]
is an eigenvector for the eigenvalue 3:

[
3 0
0 2

] [
x
0

]
=
[
3x
0

]
.

Similarly, any nonzero vector
[

0
y

]
is an eigenvector for the eigenvalue 2.
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Sometimes it’s not as obvious what the eigenvectors are.

Example 2

Let B =
[
1 1
1 1

]
.

Then any nonzero vector
[

x
x

]
is an eigenvector for the eigenvalue 2:

[
1 1
1 1

] [
x
x

]
=
[
2x
2x

]
.

Also, any nonzero vector
[

x
−x

]
is an eigenvector for the eigenvalue 0:

[
1 1
1 1

] [
x
−x

]
=
[
0
0

]
.

Note that an eigenvalue can be 0, but an eigenvector must be nonzero.
A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 5 / 13

Eigenspaces

If λ is an eigenvalue of the n × n matrix A, we find corresponding
eigenvectors by solving the equation

(A− λI)x = 0.

The set of all solutions is just the null space of the matrix A− λI.

Definition
Let A be an n × n matrix, and let λ be an eigenvalue of A. The collection
of all eigenvectors corresponding to λ, together with the zero vector, is
called the eigenspace of λ and is denoted by Eλ.

Eλ = Nul (A− λI)
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Example 3

As before, let B =
[
1 1
1 1

]
. In the previous example, we verified that the

given vectors were eigenvectors for the eigenvalues 2 and 0.
To find the eigenvectors for 2, solve for the null space of B − 2I:

Nul
([

1 1
1 1

]
− 2

[
1 0
0 1

])
= Nul

([
−1 1
1 −1

])
=
[

x
x

]
.

To find the eigenvectors for the eigenvalue 0, solve for the null space of
B − 0I = B.

You can always check if you’ve correctly identified an eigenvector: simply
multiply it by the matrix and make sure you get back a scalar multiple.
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Eigenvalues of triangular matrix

Theorem
The eigenvalues of a triangular matrix A are the entries on the main
diagonal.

Proof for the 3× 3 Upper Triangular Case:
Let

A =




a11 a12 a13
0 a22 a33
0 0 a33


 .

Then

A− λI =




a11 a12 a13
0 a22 a33
0 0 a33


−



λ 0 0
0 λ 0
0 0 λ


 =




a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ


 .
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By definition, λ is an eigenvalue of A if and only if (A− λI)x = 0 has non
trivial solutions.
This occurs if and only if (A− λI)x = 0 has a free variable.
Since

A− λI =




a11 − λ a12 a13
0 a22 − λ a23
0 0 a33 − λ




(A− λI)x = 0 has a free variable if and only if

λ = a11, λ = a22, or λ = a33
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An n × n matrix A has eigenvalue λ if and only if the equation

Ax = λx

has a nontrivial solution.
Equivalently, λ is an eigenvalue if A− λI is not invertible.
Thus, an n × n matrix A has eigenvalue λ = 0 if and only if the equation

Ax = 0x = 0

has a nontrivial solution.
This happens if and only if A is not invertible.

The scalar 0 is an eigenvalue of A if and only if A is not invertible.
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Theorem
Let A be an n× n matrix. If v1, v2, . . . , vr are eigenvectors that correspond
to distinct eigenvalues λ1, λ2, . . . , λr , then the set {v1, v2, . . . , vr} is
linearly independent.

The proof of this theorem is in Lay: Theorem 2, Section 5.1.
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Example 4
Consider the matrix

A =



4 2 3
−1 1 −3
2 4 9


 .

We are given that A has an eigenvalue λ = 3 and we want to find a basis
for the eigenspace E3.

Solution We find the null space of A− 3I:

A− 3I =



1 2 3
−1 −2 −3
2 4 6


 rref−−→



1 2 3
0 0 0
0 0 0


 .
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A− 3I rref−−→



1 2 3
0 0 0
0 0 0




So we get a single equation

x + 2y + 3z = 0 or x = −2y − 3z

and the general solution is

x =



−2y − 3z

y
z


 = y



−2
1
0


+ z



−3
0
1




Hence B =







−2
1
0


 ,



−3
0
1








is a basis for E3.
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Overview

The previous lecture introduced eigenvalues and eigenvectors. We’ll review
these definitions before considering the following question:

Question
Given a square matrix A, how can you find the eigenvalues of A?

We’ll discuss an important tool for answering this question: the
characteristic equation.

Lay, §5.2
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Eigenvalues and eigenvectors

Definition
An eigenvector of an n × n matrix A is a non-zero vector x such that
Ax = λx for some scalar λ. The scalar λ is an eigenvalue for A.

Multiplying a vector by a matrix changes the vector. An eigenvector is a
vector which is changed in the simplest way: by scaling.
Given any matrix, we can study the associated linear transformation. One
way to understand this function is by identifying the set of vectors for
which the transformation is just scalar multiplication.
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Example

Example 1

Let A =
[
2 1
0 −1

]
.

Then u =
[
1
0

]
is an eigenvector for the eigenvalue 2:

Au =
[
2 1
0 −1

] [
1
0

]
=
[
2
0

]
= 2u.

Also, v =
[

1
−3

]
is an eigenvector for the eigenvalue −1:

Av =
[
2 1
0 −1

] [
1
−3

]
=
[
−1
3

]
= −v.
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Finding Eigenvalues
Suppose we know that λ ∈ R is an eigenvalue for A. That is, for some
x 6= 0,

Ax = λx.

Then we solve for an eigenvector x by solving (A− λI)x = 0.
But how do we find eigenvalues in the first place?

x must be non zero
⇓

(A− λI)x = 0 must have non trivial solutions
⇓

(A− λI) is not invertible
⇓

det(A− λI) = 0.

Solve det(A− λI) = 0 for λ to find the eigenvalues of the matrix A.
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The eigenvalues of a square matrix A are the solutions of the characteristic
equation.

the characteristic polynomial: det(A− λI)

the characteristic equation: det(A− λI) = 0
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Examples
Example 2
Consider the matrix

A =
[
5 3
3 5

]
.

We want to find the eigenvalues of A.

Since
A− λI =

[
5 3
3 5

]
−
[
λ 0
0 λ

]
=
[
5− λ 3
3 5− λ

]
,

The equation det(A− λI) = 0 becomes

(5− λ)(5− λ)− 9 = 0
λ2 − 10λ+ 16 = 0
(λ− 8)(λ− 2) = 0
⇒ λ = 2, λ = 8.
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Example 3
Find the characteristic equation for the matrix

A =



0 3 1
3 0 2
1 2 0


 .

For a 3× 3 matrix, recall that a determinant can be computed by cofactor
expansion.

A− λI =



−λ 3 1
3 −λ 2
1 2 −λ



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det(A− λI) = det



−λ 3 1
3 −λ 2
1 2 −λ




= −λ
∣∣∣∣∣
−λ 2
2 −λ

∣∣∣∣∣− 3
∣∣∣∣∣
3 2
1 −λ

∣∣∣∣∣+ 1
∣∣∣∣∣
3 −λ
1 2

∣∣∣∣∣

= −λ(λ2 − 4)− 3(−3λ− 2) + (6 + λ)
= −λ3 + 4λ+ 9λ+ 6 + 6 + λ

= −λ3 + 14λ+ 12

Hence the characteristic equation is

−λ3 + 14λ+ 12 = 0.

The eigenvalues of A are the solutions to the characteristic equation.
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Example 4
Consider the matrix

A =




3 0 0 0 0
2 1 0 0 0
−1 4 2 0 0
8 6 −3 0 0
5 −2 4 −1 1




Find the characteristic equation for this matrix.
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Observe that

det(A− λI) =




3− λ 0 0 0 0
2 1− λ 0 0 0
−1 4 2− λ 0 0
8 6 −3 −λ 0
5 −2 4 −1 1− λ




= (3− λ)(1− λ)(2− λ)(−λ)(1− λ)
= (−λ)(1− λ)2(3− λ)(2− λ)

Thus A has eigenvalues 0, 1, 2 and 3. The eigenvalue 1 is said to have
multiplicity 2 because the factor 1− λ occurs twice in the characteristic
polynomial.

In general the (algebraic) multiplicity of an eigenvalue λ is its
multiplicity as a root of the characteristic equation.
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Similarity

The next theorem illustrates the use of the characteristic polynomial, and it
provides a basis for several iterative methods that approximate eigenvalues.

Definition (Similar matrices)
If A and B are n × n matrices, then A is similar to B if there is an
invertible matrix P such that

P−1AP = B

or equivalently,
A = PBP−1.

We say that A and B are similar. Changing A into P−1AP is called a
similarity transformation.
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Theorem
If the n × n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with the same
multiplicities).

Proof.
If B = P−1AP, then

B − λI = P−1AP − λP−1P
= P−1(AP − λP)
= P−1(A− λI)P.

Hence
det(B − λI) = det

[
P−1(A− λI)P

]

= det(P−1) det(A− λI) detP
= det(P−1) detP det(A− λI)
= det(P−1P) det(A− λI)
= det I det(A− λI)
= det(A− λI).A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 12 / 24



Application to dynamical systems
A dynamical system is a system described by a difference equation
xk+1 = Axk . Such an equation was used to model population movement
in Lay 1.10 and it is the sort of equation used to model a Markov chain.
Eigenvalues and eigenvectors provide a key to understanding the evolution
of a dynamical system. Here’s the idea that we’ll see illustrated in the next
example:

1 If you can, find a basis B of eigenvectors:
B = {b1,b2}.

2 Express the vector x0 describing the initial condition in B coordinates:
x0 = c1b1 + c2b2.

3 Since A multiplies each eigenvector by the corresponding eigenvalue,
this makes it easy to see what happens after many iterations:
Anx0 = An(c1b1 + c2b2) = c1Anb1 + c2Anb2 = c1λ

n
1b1 + c2λ

n
2b2.
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Examples

Example 5
In a certain region, about 7% of a city’s population moves to the
surrounding suburbs each year, and about 3% of the suburban population
moves to the city. In 2000 there were 800,000 residents in the city and
500,000 residents in the suburbs. We want to investigate the result of this
migration in the long term.

The migration matrix M is given by

M =
[
.93 .03
.07 .97

]
.

The first step is to find the eigenvalues of M.
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The characteristic equation is given by

0 = det
[
.93− λ .03
.07 .97− λ

]

= (.93− λ)(.97− λ)− (.03)(.07)
= λ2 − 1.9λ+ .9021− .0021
= λ2 − 1.9λ+ .9000
= (λ− 1)(λ− .9)

So the eigenvalues are λ = 1 and λ = 0.9.

E1 = Nul
[
−.07 .03
.07 −.03

]
= Nul

[
7 −3
0 0

]

This gives an eigenvector v1 =
[
3
7

]
.
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E.9 = Nul
[
.03 .03
.07 .07

]
= Nul

[
1 1
0 0

]

and an eigenvector for this space is given by v2 =
[
1
−1

]
.

The next step is to write x0 in terms of v1 and v2.
The initial vector x0 describes the initial population (in 2000), so writing

in 100,000’s we will put x0 =
[
8
5

]
.

There exist weights c1 and c2 such that

x0 = c1v1 + c2v2 =
[
v1 v2

] [c1
c2

]
(1)
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To find
[
c1
c2

]
we do the following row reduction:

[
3 1 8
7 −1 5

]
rref−−→

[
1 0 1.3
0 1 4.1

]

So
x0 = 1.3v1 + 4.1v2. (2)
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We can now look at the long term behaviour of the system. Because
v1 and v2 are eigenvectors of M, with Mv1 = v1 and Mv2 = .9v2, we
can compute each xk :

x1 = Mx0 = c1Mv1 + c2Mv2

= c1v1 + c2(0.9)v2

x2 = Mx1 = c1Mv1 + c2(0.9)Mv2

= c1v1 + c2(0.9)2v2

In general we have

xk = c1v1 + c2(0.9)kv2, k = 0, 1, 2, . . . ,

that is
xk = 1.3

[
3
7

]
+ 4.1(0.9)k

[
1
−1

]
, k = 0, 1, 2, . . .
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As k →∞, (0.9)k → 0, and xk → 1.3v1, which is
[
3.9
9.1

]
. This indicates

that in the long term 390,000 are expected to live in the city, while
910,000 are expected to live in the suburbs.
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Example 6

Let A =
[
0.8 0.1
0.2 0.9

]
. We analyse the long-term behaviour of the dynamical

system defined by xk+1 = Axk , (k = 0, 1, 2, . . .), with x0 =
[
0.7
0.3

]
.

As in the previous example we find the eigenvalues and eigenvectors
of the matrix A.

0 = det
[
0.8− λ 0.1
0.2 0.9− λ

]

= (0.8− λ)(0.9− λ)− (0.1)(0.2)
= λ2 − 1.7λ+ 0.7
= (λ− 1)(λ− 0.7)
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So the eigenvalues are λ = 1 and λ = 0.7. Eigenvalues corresponding to
these eigenvalues are multiples of

v1 =
[
1
2

]
and v2 =

[
1
−1

]

respectively. The set {v1, v2} is clearly a basis for R2.
The next step is to write x0 in terms of v1 and v2.

There exist weights c1 and c2 such that

x0 = c1v1 + c2v2 =
[
v1 v2

] [c1
c2

]
(3)
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To find
[
c1
c2

]
we do the following row reduction:

[
1 1 0.7
2 −1 0.3

]
rref−−→

[
1 0 0.333
0 1 0.367

]

So
x0 = 0.333v1 + 0.367v2. (4)

We can now look at the long term behaviour of the system.
As in the previous example, since λ1 = 1 and λ2 = 0.7 we have

xk = c1v1 + c2(0.7)kv2, k = 0, 1, 2, . . . ,
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This gives

xk = 0.333
[
1
2

]
+ 0.367(0.7)k

[
1
−1

]
, k = 0, 1, 2, . . .

As k →∞, (0.7)k → 0, and xk → 0.333v1, which is
[
1/3
2/3

]
. This is the

steady state vector of the Markov chain described by A.
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Some Numerical Notes
Computer software such as Mathematica and Maple can use symbolic
calculation to find the characteristic polynomial of a moderate sized
matrix. There is no formula or finite algorithm to solve the
characteristic equation of a general n × n matrix for n ≥ 5.
The best numerical methods for finding eigenvalues avoid the
characteristic equation entirely. Several common algorithms for
estimating eigenvalues are based on the Theorem on Similar matrices.
Another technique, called Jacobi’s method works when A = AT and
computes a sequence of matrices of the form

A1 = A and Ak+1 = P−1
k AkPk , k = 1, 2, . . . .

Each matrix in the sequence is similar to A and has the same
eigenvalues as A. The non diagonal entries of Ak+1 tend to 0 as k
increases, and the diagonal entries tend to approach the eigenvalues
of A.
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Overview

In preparation for the exam, we’ll look at the questions asked on the 2013
Mid-Semester Exam.
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Sample Question: Lines & Planes

Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

1 Find an equation for P of the form n · (r − r0) = 0 for some vector n
and some vector r0.

2 Find an equation for L.
3 Let Q be the plane containing L and the point (1, 1, 2). Find an

equation for Q.
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Solution: Lines & Planes
Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

1 Find an equation for P of the form n · (r − r0) = 0 for some vector n
and some vector r0.

To find the equation of a plane P, we need a normal vector to P and a
point on P.

The plane Ax + By + Cz + D = 0 has normal vector




A
B
C


, so a normal

vector to P is given by




2
1
−1


. To find a point on P, we can plug in

x = y = 0 and see that (0, 0,−1) satisfies the equation 2x + y − z = 1.
Thus the general formula n · (r − r0) = 0 becomes




2
1
−1


 ·




x
y

z + 1


 = 0.
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Solution: Lines & Planes
Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

2 Find an equation for L.
A direction vector for L is any normal vector to P: i.e., any scalar multiple

of n =




2
1
−1


. This yields the vector equation

r =




1
1
1


+ t




2
1
−1


 ,

with the associated parametric equations

x = 1 + 2t y = 1 + t z = 1− t.
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Solution: Lines & Planes
Let P be the plane in R3 defined by the equation 2x + y − z = 1, and let
L be the line through the point (1, 1, 1) which is orthogonal to P.

3 Let Q be the plane containing L and the point (1, 1, 2). Find an
equation for Q.

To find a normal vector to the new plane, take the cross product of two
vectors parallel to Q. For example, you could choose a direction vector for

L and the vector




0
0
1


 between the two given points on Q:

∣∣∣∣∣∣∣

i j k
2 1 −1
0 0 1

∣∣∣∣∣∣∣
= i− 2j.

Any equation for the plane is acceptable, including the following:






x
y
z


−




1
1
2





 ·




1
−2
0


 = 0,

(x − 1)− 2(y − 1) = 0,

x − 2y + 1 = 0.
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Sample Question: Bases & Coordinates

The set B = {t + 1, 1 + t2, 3− t2} is a basis for P2.

1 If [p(t)]B =




1
1
−1


, express p in the form p(t) = a + bt + ct2.

2 Find the coordinate vector of the polynomial q(t) = 2− 2t with
respect to B coordinates.
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Solution: Bases & Coordinates

The set B = {t + 1, 1 + t2, 3− t2} is a basis for P2.

1 If [p(t)]B =




1
1
−1


, express p in the form p(t) = a + bt + ct2.

Since the B coordinates of p are 1, 1, and −1, we have

p(t) = 1(t + 1) + 1(1 + t2)− 1(3− t2) = −1 + t + 2t2.
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Solution: Bases & Coordinates
The set B = {t + 1, 1 + t2, 3− t2} is a basis for P2.

2 Find the coordinate vector of the polynomial q(t) = 2− 2t with
respect to B coordinates.

We need a, b, and c such that

a(t + 1) + b(1 + t2) + c(3− t2) = 2− 2t.

Collecting like powers of t gives us a system of equations:

a + b + 3c = 2
a = −2

b − c = 0.

The unique solution to this is a = −2, b = c = 1.
To protect against algebra mistakes, check that

−2(t + 1) + 1(1 + t2) + 1(3− t2) = 2− 2t.
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Sample Question: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

1 A is the set of 2× 2 matrices whose entries are integers.

2 B is the set of vectors in R3 which are orthogonal to




1
0
2


.

3 C is the set of polynomials whose derivative is 0:

C = {p(x) ∈ P | d
dx p(x) = 0}.
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Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

1 A is the set of 2× 2 matrices whose entries are integers.
This is a subset of the vector space of 2× 2 matrices with real entries, so
we can check if the three subspace axioms hold:

1 Is 0 in the set?
2 Is the set closed under addition?
3 Is the set closed under scalar multiplication?

No, this is not a vector space. This set is not closed under multiplication
by a non-integer scalar. For example,

1
2

[
1 0
0 0

]
=
[

1
2 0
0 0

]
is not in A.
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Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

2 B is the set of vectors in R3 which are orthogonal to




1
0
2


.

As before, we could check the 3 subspace axioms, but it’s quicker to
observe that B is the null space of the matrix [1 0 2], and the null space
of a matrix is always a subspace.
We can find a basis for the null space explicitly and check that it has 2
vectors. Alternatively, observe that the matrix [1 0 2] has rank 1, so its
null space is two-dimensional by the Rank Theorem.
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Checking the 3 subspace axioms

1




0
0
0


 ·




1
0
2


 = 0, so 0 ∈ B.

2 Suppose v, u ∈ B. Then v ·




1
0
2


 = u ·




1
0
2


 = 0.

(u + v) ·




1
0
2


 = u ·




1
0
2


+ v ·




1
0
2


 = 0 + 0 = 0.

Since u + v is in B, B is closed under addition.
3 Suppose v ∈ B.

(cv) ·




1
0
2


 = c


v ·




1
0
2





 = c0 = 0.

Since cv is in B, B is closed under scalar multiplication.
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Solution: Vector Spaces

Decide whether each of the following sets is a vector space. If it is a vector
space, state its dimension. If it is not a vector space, explain why.

3 the set of polynomials whose derivative is 0:

C =
{

p(x) ∈ P
∣∣∣ d

dx p(x) = 0
}

.

We can solve this problem by recognising that the polynomials whose
derivatives are 0 are exactly the constant polynomials, so C = R1. It
follows that C is a one-dimensional vector space.
It is also acceptable to show that C is a subspace of the vector space P by
verifying each of the subspace axioms.
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Sample Question: Linear transformations
A linear transformation T : M2×2 → M2×2 is defined by:

T
([

a b
c d

])
=
[
a b
c d

] [
1 −1
−1 1

]
.

(a) Calculate T
([

a b
c d

])
.

(b) Which, if any, of the following matrices are in ker(T )?
[
1 1
3 3

] [
1 3
3 1

] [
1 3
1 3

]

(c) Which, if any, of the following matrices are in range(T )?
[
−2 2
2 −2

] [
1 −1
−2 2

] [
1 0
0 1

]

(d) Find the kernel of T and explain why T is not one to one.
(e) Explain why T does not map M2×2 onto M2×2.
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Sample Question: Subspaces associated to a matrix

Consider the matrix A: 

2 −4 0 2
−1 2 1 2
1 −2 1 4


 .

(i) Find a basis for NulA.
(ii) Find a basis for ColA.
(iii) Consider the linear transformation TA : R4 → R3 defined by

TA(x) = Ax. Give a geometric description of the range of TA as a
subspace of R3. What is its dimension? Does it pass through the
origin?
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We begin by row-reducing A:


2 −4 0 2
−1 2 1 2
1 −2 1 4


 rref−−→



1 −2 0 1
0 0 1 3
0 0 0 0


 .

(i) Find a basis for NulA.

The general solution to R




w
x
y
z


 = 0 is y + 3z = 0, w − 2x + z = 0, so

NulA =








2x − z
x
−3z

z








=





x




2
1
0
0


+ z




−1
0
−3
1








and so B =








2
1
0
0


 ,




−1
0
−3
1








is a basis for NulA.
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We begin by row-reducing A:


2 −4 0 2
−1 2 1 2
1 −2 1 4


 rref−−→



1 −2 0 1
0 0 1 3
0 0 0 0


 .

(ii) Find a basis for ColA.
A basis for ColA is obtained by taking every column of A that corresponds
to a pivot column in the row reduced form of A. Thus the first and third
columns

C =







2
−1
1


 ,



0
1
1








form a basis for ColA.
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(iii) Consider the linear transformation TA : R4 → R3 defined by
TA(x) = Ax. Give a geometric description of the range of TA as a
subspace of R3. What is its dimension? Does it pass through the
origin?

The range of TA is exactly the column space of A. We just saw that it has
a basis with two elements, so it is two dimensional. It is a plane in R3, and
passed through the origin, because every vector subspace contains O.
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Revision: Definitions

What is a vector space? Give some examples.
What is a subspace? How do you check if a subset of a vector space
is a subspace?
What is a linear transformation? Give some examples.
What does it mean for a set of vectors to be linearly independent?
How do you check this?
What are the coordinates of a vector with respect to a basis?
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Revision: Geometry of R3

What information do you need to determine a line? A plane?
How can you check if two lines are orthogonal? Parallel?
How do you find the distance between a point and a line? A point
and a plane?
How can you find the angle between two vectors?
What are the scalar and vector projections of one vector onto
another? Can you describe these in words?
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Revision: Bases

What is a basis for a vector space?
If the dimension of V is n, then V and Rn are isomorphic. What does
this mean and how do we know it’s true?
In an n-dimensional vector space,

I any n linearly independent vectors form a basis.
I any n vectors which span V form a basis.
I any set of vectors which spans V contains a basis for V .
I any set of linearly independent vectors can be extended to a basis for

V .
How do you find a basis for the null space of a matrix? The column
space? The row space? The kernel of the associated linear
transformation? (Which pair of these are the same?)
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Overview

Before the break, we began to study eigenvectors and eigenvalues,
introducing the characteristic equation as a tool for finding the eigenvalues
of a matrix:

det(A − λI) = 0.

The roots of the characteristic equation are the eigenvalues of λ.
We also discussed the notion of similarity: the matrices A and B are
similar if A = PBP−1 for some invertible matrix P.

Question
When is a matrix A similar to a diagonal matrix?

From Lay, §5.3
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Quick review

Definition
An eigenvector of an n × n matrix A is a non-zero vector x such that
Ax = λx for some scalar λ. The scalar λ is an eigenvalue for A.

To find the eigenvalues of a matrix, find the solutions of the characteristic
equation:

det(A − λI) = 0.

The λ-eigenspace is the set of all eigenvectors for the eigenvalue λ,
together with the zero vector. The λ-eigenspace Eλ is Nul (A − λI).
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The advantages of a diagonal matrix

Given a diagonal matrix, it’s easy to answer the following questions:
1 What are the eigenvalues of D? The dimensions of each eigenspace?
2 What is the determinant of D?
3 Is D invertible?
4 What is the characteristic polynomial of D?
5 What is Dk for k = 1, 2, 3, . . . ?

For example, let D =




1050 0 0
0 π 0
0 0 −2.7


.

Can you answer each of the questions above?
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The diagonalisation theorem
The goal in this section is to develop a useful factorisation A = PDP−1,
for an n × n matrix A. This factorisation has several advantages:

it makes transparent the geometric action of the associated linear
transformation, and
it permits easy calculation of Ak for large values of k:

Example 1

Let D =



2 0 0
0 −4 0
0 0 −1


.

Then the transformation TD scales the three standard basis vectors by
2,−4, and −1, respectively.

D7 =



27 0 0
0 (−4)7 0
0 0 (−1)7


 .
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Example 2

Let A =
[
1 3
2 2

]
. We will use similarity to find a formula for Ak . Suppose

we’re given A = PDP−1 where P =
[
1 3
1 −2

]
and D =

[
4 0
0 −1

]
.

We have

A = PDP−1

A2 = PDP−1PDP−1

= PD2P−1

A3 = PD2P−1PDP−1

= PD3P−1

... ... ...
Ak = PDkP−1
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So

Ak =
[
1 3
1 −2

] [
4k 0
0 (−1)k

] [
2/5 3/5
1/5 −1/5

]

=
[

2
54k + 3

5(−1)k 3
54k − 3

5(−1)k
2
54k − 2

5(−1)k 3
54k + 2

5(−1)k

]
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Diagonalisable Matrices

Definition
An n × n (square) matrix is diagonalisable if there is a diagonal matrix D
such that A is similar to D.

That is, A is diagonalisable if there is an invertible n × n matrix P such
that P−1AP = D ( or equivalently A = PDP−1).

Question
How can we tell when A is diagonalisable?

The answer lies in examining the eigenvalues and eigenvectors of A.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 7 / 9

Recall that in Example 2 we had

A =
[
1 3
2 2

]
,D =

[
4 0
0 −1

]
and P =

[
1 3
1 −2

]
and A = PDP−1.

Note that
A

[
1
1

]
=

[
1 3
2 2

] [
1
1

]
= 4

[
1
1

]

and
A

[
3

−2

]
=

[
1 3
2 2

] [
3

−2

]
= −1

[
3

−2

]
.

We see that each column of the matrix P is an eigenvector of A...
This means that we can view P as a change of basis matrix from
eigenvector coordinates to standard coordinates!
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In general, if AP = PD, then

A
[
p1 p2 · · · pn

]
=

[
p1 p2 · · · pn

]




λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn



.

If
[
p1 p2 · · · pn

]
is invertible, then A is the same as

[
p1 p2 · · · pn

]




λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn




[
p1 p2 · · · pn

]−1
.
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Theorem (The Diagonalisation Theorem)
Let A be an n × n matrix. Then A is diagonalisable if and only if A has n
linearly independent eigenvectors.

P−1AP is a diagonal matrix D if and only if the columns of P are n linearly
independent eigenvectors of A and the diagonal entries of D are the
eigenvalues of A corresponding to the eigenvectors of A in the same order.
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Example 1
Find a matrix P that diagonalises the matrix

A =



−1 0 1
3 0 −3
1 0 −1


 .

The characteristic polynomial is given by

det(A− λI) = det



−1− λ 0 1

3 −λ −3
1 0 −1− λ


 .

= (−1− λ)(−λ)(−1− λ) + λ

= −λ2(λ+ 2).

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 2 / 12

The eigenvalues of A are λ = 0 (of multiplicity 2) and λ = −2 (of
multiplicity 1).

The eigenspace E0 has a basis consisting of the vectors

p1 =



0
1
0


 , p2 =



1
0
1




and the eigenspace E−2 has a basis consisting of the vector

p3 =



−1
3
1




It is easy to check that these vectors are linearly independent.
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So if we take

P =
[
p1 p2 p3

]
=



0 1 −1
1 0 3
0 1 1




then P is invertible.

It is easy to check that AP = PD where D =



0 0 0
0 0 0
0 0 −2




AP =



−1 0 1
3 0 −3
1 0 −1






0 1 −1
1 0 3
0 1 1


 =



0 0 2
0 0 −6
0 0 −2




PD =



0 1 −1
1 0 3
0 1 1






0 0 0
0 0 0
0 0 −2


 =



0 0 2
0 0 −6
0 0 −2


 .
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Example 2
Can you find a matrix P that diagonalises the matrix

A =



0 1 0
0 0 1
2 −5 4


?

The characteristic polynomial is given by

det(A− λI) = det



−λ 1 0
0 −λ 1
2 −5 4− λ




= (−λ) [−λ(4− λ) + 5]− 1(−2)
= −λ3 + 4λ2 − 5λ+ 2
= −(λ− 1)2(λ− 2)
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This means that A has eigenvalues λ = 1 (of multiplicity 2) and λ = 2 (of
multiplicity 1).

The corresponding eigenspaces are

E1 = Span







1
1
1







,E2 = Span







1
2
4







.

Note that although λ = 1 has multiplicity 2, the corresponding eigenspace
has dimension 1. This means that we can only find 2 linearly independent
eigenvectors, and by the Diagonalisation Theorem A is not diagonalisable.
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Example 3
Consider the matrix

A =



2 −3 7
0 5 1
0 0 1


 .

Why is A diagonalisable?

Since A is upper triangular, it’s easy to see that it has three distinct
eigenvalues: λ1 = 2, λ2 = 5 and λ3 = 1. Eigenvectors corresponding to
distinct eigenvalues are linearly independent, so A has three linearly
independent eigenvectors and is therefore diagonalisable.

Theorem
If A is an n× n matrix with n distinct eigenvalues, then A is diagonalisable.
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Example 4
Is the matrix

A =




4 0 0 0
0 4 0 0
0 0 2 0
1 0 0 2




diagonalisable?

The eigenvalues are λ = 4 with multiplicity 2, and λ = 2 with multiplicity
2.
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The eigenspace E4 is found as follows:

E4 = Nul




0 0 0 0
0 0 0 0
0 0 −2 0
1 0 0 −2




= Span





v1 =




0
1
0
0


 , v2 =




2
0
0
1







,

and has dimension 2.
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The eigenspace E2 is given by

E2 = Nul




2 0 0 0
0 2 0 0
0 0 0 0
1 0 0 0




= Span





v3 =




0
0
1
0


 , v4 =




0
0
0
1







,

and has dimension 2.
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{v1, v2, v3, v4} =








0
1
0
0


 ,




2
0
0
1


 ,




0
0
1
0


 ,




0
0
0
1








is linearly independent.

This implies that P =
[
v1 v2 v3 v4

]
is invertible and A = PDP−1

where

P =




0 2 0 0
1 0 0 0
0 0 1 0
0 1 0 1


 and D =




4 0 0 0
0 4 0 0
0 0 2 0
0 0 0 2


 .
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Theorem
Let A be an n × n matrix whose distinct eigenvalues are λ1, λ2, . . . , λp.

1 For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or
equal to its multiplicity.

2 The matrix A is diagonalisable if and only if the sum of the
dimensions of the distinct eigenspaces equals n.

3 If A is diagonalisable and Bk is a basis for the eigenspace
corresponding to λk for each k, then the total collection of vectors in
the sets B1,B2, . . . ,Bp forms an eigenvector basis for Rn.

4 If P−1AP = D for a diagonal matrix D, then P is the change of basis
matrix from eigenvector coordinates to standard coordinates.
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Overview
Last week introduced the important Diagonalisation Theorem:

An n × n matrix A is diagonalisable if and only if there is a basis
for Rn consisting of eigenvectors of A.

This week we’ll continue our study of eigenvectors and eigenvalues, but
instead of focusing just on the matrix, we’ll consider the associated linear
transformation.

From Lay, §5.4

Question
If we always treat a matrix as defining a linear transformation, what role
does diagonalisation play?

(The version of the lecture notes posted online has more examples than
will be covered in class.)
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Introduction
We know that a matrix determines a linear transformation, but the
converse is also true:
if T : Rn → Rm is a linear transformation, then T can be obtained as a
matrix transformation

(∗) T (x) = Ax for all x ∈ Rn

for a unique matrix A.
To construct this matrix, define

A = [T (e1) T (e2) · · · T (en)],

the m × n matrix whose columns are the images via T of the vectors of
the standard basis for Rn (notice that T (ei) is a vector in Rm for every
i = 1, . . . , n).
The matrix A is called the standard matrix of T .
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Example 1
Let T : R2 → R3 be the linear transformation defined by the formula

T
([

x
y

])
=



x − y
3x + y
x − y


 .

Find the standard matrix of T .

The standard matrix of T is the matrix
[
[T (e1)]E [T (e2)]E

]
.

Since

T (e1) = T
([

1
0

])
=



1
3
1


 , T (e2) = T

([
0
1

])
=



−1
1
−1


 ,

the standard matrix of T is the 3× 2 matrix


1 −1
3 1
1 −1


 .
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Example 2

Let A =




2 0 1
0 −1 0
0 0 1


. What does the linear transformation T (x) = Ax

do to each of the standard basis vectors?

The image of e1 is the vector




2
0
0


 = T (e1). Thus, we see that T

multiplies any vector parallel to the x -axis by the scalar 2.

The image of e2 is the vector




0
−1
0


 = T (e2). Thus, we see that T

multiplies any vector parallel to the y -axis by the scalar −1.

The image of e3 is the vector




1
0
1


 = T (e3). Thus, we see that T

sends a vector parallel to the z-axis to a vector with equal x and z
coordinates.
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When we introduced the notion of coordinates, we noted that choosing
different bases for our vector space gave us different coordinates. For
example, suppose

E = {e1, e2, e3} and B = {e1, e2,−e1 + e3}.

Then

e3 =




0
0
1



E

=




1
0
1



B

.

When we say that Tx = Ax, we are implicitly assuming that everything is
written in terms of standard E coordinates.
Instead, it’s more precise to write

[T (x)]E = A[x]E with A = [[T (e1)]E [T (e2)]E · · · [T (en)]E ]

Every linear transformation T from Rn to Rm can be described as
multiplication by its standard matrix: the standard matrix of T describes
the action of T in terms of the coordinate systems on Rn and Rm given by
the standard bases of these spaces.
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If we start with a vector expressed in E coordinates, then it’s convenient to
represent the linear transformation T by [T (x)]E = A[x]E .
However, for any sets of coordinates on the domain and codomain, we can
find a matrix that represents the linear transformation in those coordinates:

[T (x)]C = A[x]B

(Note that the domain and codomain can be described using different
coordinates! This is obvious when A is an m× n matrix for m 6= n, but it’s
also true for linear transformations from Rn to itself.)
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Example 3

For A =




2 0 1
0 −1 0
0 0 1


, we saw that [T (x)]E = A[x]E acted as follows:

T multiplies any vector parallel to the x -axis by the scalar 2.
T multiplies any vector parallel to the y -axis by the scalar −1.
T sends a vector parallel to the z-axis to a vector with equal x and z
coordinates.

Describe the matrix B such that [T (x)]B = A[x]B, where
B = {e1, e2,−e1 + e3}.

Just as the i th column of A is [T (ei)]E , the i th column of B will be
[T (bi)]B.
Since e1 = b1, T (b1) = 2b1. Similarly, T (b2) = −b2.

Thus we see that B =




2 0 ∗
0 −1 ∗
0 0 ∗


.
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The third column is the interesting one. Again, recall
B = {e1, e2,−e1 + e3}, and

T multiplies any vector parallel to the x -axis by the scalar 2.
T multiplies any vector parallel to the y -axis by the scalar −1.
T sends a vector parallel to the z-axis to a vector with equal x and z
coordinates.

The 3rd column of B will be [T (b3)]B.

T (b3) = T (−e1+e3) = −T (e1)+T (e3) = −2e1+(e1+e3) = −e1+e3 = b3.

Thus we see that B =




2 0 0
0 −1 0
0 0 1


.

Notice that in B coordinates, the matrix representing T is diagonal!
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Every linear transformation T : V →W between finite dimensional vector
spaces can be represented by a matrix, but the matrix representation of a
linear transformation depends on the choice of bases for V and W (thus it
is not unique).

This allows us to reduce many linear algebra problems concerning abstract
vector spaces to linear algebra problems concerning the familiar vector
spaces Rn. This is important even for linear transformations T : Rn → Rm

since certain choices of bases for Rn and Rm can make important
properties of T more evident: to solve certain problems easily, it is
important to choose the right coordinates.
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Matrices and linear transformations
Let T : V →W be a linear transformation that maps from V to W , and
suppose that we’ve fixed a basis B = {b1, . . . ,bn} for V and a basis
C = {c1, . . . , cm} for W .

For any vector x ∈ V , the coordinate vector [x]B is in Rn and the
coordinate vector of its image [T (x)]C is in Rm.

We want to associate a matrix M with T with the property that
M[x]B = [T (x)]C .

It can be helpful to organise this information with a diagram

V 3 x T−−−−−−−−−−→ T (x) ∈W
↓ ↓

Rn 3 [x]B −−−−−−−−−−−→
multiplication by M

[T (x)]C ∈ Rm

where the vertical arrows represent the coordinate mappings.
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Here’s an example to illustrate how we might find such a matrix M:
Let B = {b1,b2} and C = {c1, c2} be bases for two vector spaces V and
W , respectively.
Let T : V →W be the linear transformation defined by

T (b1) = 2c1 − 3c2,T (b2) = −4c1 + 5c2 .

Why does this define the entire linear transformation? For an arbitrary

vector v = x1b1 + x2b2 in V , we define its image under T as

T (v) = x1T (b1) + x2T (b2).
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For example, if x is the vector in V given by x = 3b1 + 2b2, so that

[x]B =
[
3
2

]
, we have

T (x) = T (3b1 + 2b2)
= 3T (b1) + 2T (b2)
= 3(2c1 − 3c2) + 2(−4c1 + 5c2)
= −2c1 + c2.
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Equivalently, we have

[T (x)]C = [3T (b1) + 2T (b2)]C
= 3[T (b1)]C + 2[T (b2)]C

=
[
[T (b1)]C [T (b2)]C

] [3
2

]

=
[
[T (b1)]C [T (b2)]C

]
[x]B

In this case, since T (b1) = 2c1 − 3c2 and T (b2) = −4c1 + 5c2 we have

[T (b1)]C =
[
2
−3

]
and [T (b2)]C =

[
−4
5

]

and so

[T (x)]C =
[
2 −4
−3 5

] [
3
2

]

=
[
−2
1

]
.
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In the last page, we are not so much interested in the actual calculation
but in the equation

[T (x)]C =
[
[T (b1)]C [T (b2)]C

]
[x]B

This gives us the matrix M:

M =
[
[T (b1)]C [T (b2)]C

]

whose columns consist of the coordinate vectors of T (b1) and T (b2) with
respect to the basis C in W .
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In general, when T is a linear transformation that maps from V to W
where B = {b1, . . . ,bn} is a basis for V and C = {c1, . . . , cm} is a basis
for W the matrix associated to T with respect to these bases is

M =
[
[T (b1)]C · · · [T (bn)]C

]
.

We write T
C←B for M, so that T

C←B has the property

[T (x)]C =
[
[T (b1)]C · · · [T (bn)]C

]
[x]B

= T
C←B[x]B.

The matrix T
C←B describes how the linear transformation T operates in

terms of the coordinate systems on V and W associated to the basis B
and C respectively.
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NB. T
C←B is the matrix for T relative to B and C. It depends on the choice

of both the bases B, C. The order of B, C is important.

In the case that T : V → V and B = C, T
B←B is written [T ]B and is the

matrix for T relative to B, or more shortly the B-matrix of T .

So by taking bases in each space, and writing vectors with respect to these
bases, T can be studied by studying the matrix associated to T with
respect to these bases.
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Algorithm for finding the matrix T
C←B

To find the matrix T
C←B where T : V →W relative to

a basis B = {b1, . . . ,bn} of V
a basis C = {c1, . . . , cm} of W

Find T (b1),T (b2), . . . ,T (bn).
Find the coordinate vector [T (b1)]C of T (b1) with respect to the
basis C. This is a column vector in Rm.
Do this for each T (bi).
Make a matrix from these column vectors. This matrix is T

C←B .

N.B. The coordinate vectors [T (b1)]C , [T (b2)]C , . . . , [T (bn)]C have to be
written as columns (not rows!).
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Examples

Example 4
Let B = {b1,b2,b3} and D = {d1,d2} be bases for vector spaces V and
W respectively. T : V →W is the linear transformation with the property
that

T (b1) = 3d1 − 5d2,

T (b2) = −d1 + 6d2,

T (b3) = 4d2

We find the matrix T
D←B of T relative to B and D.
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We have
[T (b1)]D =

[
3
−5

]
, [T (b2)]D =

[
−1
6

]

and
[T (b3)]D =

[
0
4

]

This gives

T
D←B =

[
[T (b1)]D [T (b3)]D [T (b3)]D

]

=
[

3 −1 0
−5 6 4

]
.
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Example 5
Define T : P2 → R2 by

T (p(t)) =
[
p(0) + p(1)

p(−1)

]
.

(a) Show that T is a linear transformation.
(b) Find the matrix T

E←B of T relative to the standard bases B = {1, t, t2}
and E = {e1, e2} of P2 and R2.

(a) This is an exercise for you.
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(b) Let B = {1, t, t2} and E = {e1, e2}.
• STEP 1 Find the images of the vectors in B under T (as linear
combinations of the vectors in E).

T (1) =
[
1 + 1
1

]
=
[
2
1

]
= 2e1 + e2

T (t) =
[
0 + 1
−1

]
=
[

1
−1

]
= e1 − e2

T (t2) =
[
0 + 1
1

]
=
[
1
1

]
= e1 + e2.

• STEP 2 We find the coordinate vectors of T (1), T (t), T (t2) in the
basis E :

[T (1)]E =
[
2
1

]
, [T (t)]E =

[
1
−1

]
, [T (t2)]E =

[
1
1

]

• STEP 3 We form the matrix whose columns are the coordinate vectors
in step 2

T
E←B =

[
2 1 1
1 −1 1

]
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Example 6
Let V = Span{sin t, cos t}, and D : V → V the linear transformation
D : f 7→ f ′. Let b1 = sin t,b2 = cos t, B = {b1,b2}, a basis for V .
We find the matrix of T with respect to the basis B.

• STEP 1 We have

D(b1) = cos t = 0b1 + 1b2,

D(b2) = − sin t = −1b1 + 0b2.

• STEP 2 From this we have

[D(b1)]B =
[
0
1

]
, [D(b2)]B =

[
−1
0

]
,

• STEP 3 So that

[D]B =
[
[T (b1)B [T (b2)]B

]
=
[
0 −1
1 0

]
.
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Let f (t) = 4 sin t − 6 cos t. We can use the matrix we have just found to

get the derivative of f (t). Now [f (t)]B =
[
4
−6

]
. Then

[D(f (t))]B = [D]B[f (t)]B

=
[
0 −1
1 0

] [
4
−6

]

=
[
6
4

]
.

This, of course gives
f ′(t) = 6 sin t + 4 cos t

which is what we would expect.
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Example 7
Let M2×2 be the vector space of 2× 2 matrixes and let P2 be the vector
space of polynomials of degree at most 2. Let T : M2×2 → P2 be the
linear transformation given by

T
([

a b
c d

])
= a + b + c + (a − c)x + (a + d)x2.

We find the matrix of T with respect to the basis

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
for M2×2 and the standard basis

C = {1, x , x2} for P2.
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• STEP 1 We find the effect of T on each of the basis elements:

T
([

1 0
0 0

])
= 1 + x + x2,

T
([

0 1
0 0

])
= 1,

T
([

0 0
1 0

])
= 1− x ,

T
([

0 0
0 1

])
= x2.
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• STEP 2 The corresponding coordinate vectors are

[
T
([

1 0
0 0

])]

C
=



1
1
1


 ,

[
T
([

0 1
0 0

])]

C
=



1
0
0


 ,

[
T
([

0 0
1 0

])]

C
=



1
−1
0


 ,

[
T
([

0 0
0 1

])]

C
=



0
0
1


 .
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• STEP 3 Hence the matrix for T relative to the bases B and C is


1 1 1 0
1 0 −1 0
1 0 0 1


 .
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Example 8
We consider the linear transformation

H : P2 → M2×2

given by

H(a + bx + cx2) =
[
a + b a − b
c c − a

]

We find the matrix of H with respect to the standard basis C = {1, x , x2}
for P2 and

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
for M2×2.
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• STEP 1 We find the effect of H on each of the basis elements:

H(1) =
[
1 1
0 −1

]
, H(x) =

[
1 −1
0 0

]
,H(x2) =

[
0 0
1 1

]
.

• STEP 2 The corresponding coordinate vectors are

[H(1)]B =




1
1
0
−1


 , [H(x)]B =




1
−1
0
0


 , [H(x2)]B =




0
0
1
1


 .
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• STEP 3 Hence the matrix for H relative to the bases C and B is



1 1 0
1 −1 0
0 0 1
−1 0 1


 .
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Linear transformations from V to V

The most common case is when T : V → V and B = C. In this case T
B←B

is written [T ]B and is the matrix for T relative to B or simply the
B-matrix of T .
The B-matrix for T : V → V satisfies

[T (x)]B = [T ]B[x]B, for all x ∈ V . (1)

x T−−−−−−−−−−−−→ T (x)

↓ ↓
[x]B

multiplication by [T ]B−−−−−−−−−−−−−→ [T (x)]B
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Examples
Example 9
Let T : P2 → P2 be the linear transformation defined by

T (p(x)) = p(2x − 1).

We find the matrix of T with respect to E = {1, x , x2}

• STEP 1 It is clear that

T (1) = 1, T (x) = 2x − 1,
T (x2) = (2x − 1)2 = 1− 4x + 4x2

• STEP 2 So the coordinate vectors are

[T (1)]E =



1
0
0


 , [T (x)]E =



−1
2
0


 ,
[
T (x2)

]
E

=



1
−4
4


 .
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• STEP 3 Therefore

[T ]E =



1 −1 1
0 2 −4
0 0 4




Example 10
We compute T (3 + 2x − x2) using part (a).

The coordinate vector of p(x) = (3+2x − x2) with respect to E is given by

[p(x)]E =



3
2
−1


 .

We use the relationship

[T (p(x))]E = [T ]E [p(x)]E .
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This gives

[T (3 + 2x − x2)]E = [T (p(x))]E

= [T ]E [p(x)]E

=



1 −1 1
0 2 −4
0 0 4






3
2
−1




=



0
8
−4




It follows that T (3 + 2x − x2) = 8x − 4x2.
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Example 11
Consider the linear transformation F : M2×2 → M2×2 given by

F (A) = A + AT

where A =
[
a b
c d

]
.

We use the basis

B =
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
for M2×2 to find a matrix

representation for T .
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More explicitly F is given by

F
([

a b
c d

])
=
[
a b
c d

]
+
[
a c
b d

]
=
[

2a b + c
b + c 2d

]

• STEP 1 We find the effect of F on each of the basis elements:

F
([

1 0
0 0

])
=
[
2 0
0 0

]
,F
([

0 1
0 0

])
=
[
0 1
1 0

]
,

F
([

0 0
1 0

])
=
[
0 1
1 0

]
,F
([

0 0
0 1

])
=
[
0 0
0 2

]
.
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• STEP 2 The corresponding coordinate vectors are

[
F
([

1 0
0 0

])]

B
=




2
0
0
0


 ,
[
F
([

0 1
0 0

])]

B
=




0
1
1
0


 ,

[
F
([

0 0
1 0

])]

B
=




0
1
1
0


 ,
[
F
([

0 0
0 1

])]

B
=




0
0
0
2


 .

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 37 / 50

• STEP 3 Hence the matrix representing F is



2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


 .
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Example 12
Let V = Span {e2x , e2x cos x , e2x sin x}.
We find the matrix of the differential operator D with respect to

B = {e2x , e2x cos x , e2x sin x}.

• STEP 1 We see that

D(e2x ) = 2e2x

D(e2x cos x) = 2e2x cos x − e2x sin x
D(e2x sin x) = 2e2x sin x + e2x cos x
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• STEP 2 So the coordinate vectors are

[D(e2x )]B =



2
0
0


 , [D(e2x cos x)]B =



0
2
−1


 ,

and [D(e2x sin x)]B =



0
1
2


 .

• STEP 3 Hence

[D]B =



2 0 0
0 2 1
0 −1 2


 .
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Example 13
We use this result to find the derivative of
f (x) = 3e2x − e2x cos x + 2e2x sin x .

The coordinate vector of f (x) is given by

[f ]B =



3
−1
2


 .

We do this calculation using

[D(f )]B = [D]B[f ]B.
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This gives

[D(f )]B = [D]B[f ]B

=



2 0 0
0 2 1
0 −1 2






3
−1
2




=



6
0
5


 .

This indicates that
f ′(x) = 6e2x + 5e2x sin x .

You should check this result by differentiation.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 42 / 50



Example 14
We use the previous result to find

∫
(4e2x − 3e2x sin x) dx

We recall that with the basis B = {e2x , e2x cos x , e2x sin x} the matrix
representation of the differential operator D is given by

[D]B =



2 0 0
0 2 1
0 −1 2


 .

We also notice that [D]B is invertible with inverse:

[D]−1
B =



1/2 0 0
0 2/5 −1/5
0 1/5 2/5


 .
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The coordinate vector of 4e2x − 3e2x sin x with respect to the basis B is

given by



4
0
−3


. We use this together with the inverse of [D]B to find the

antiderivative
∫

(4e2x − 3e2x sin x) dx :

[D]−1
B [4e2x − 3e2x ]B =



1/2 0 0
0 2/5 −1/5
0 1/5 2/5






4
0
−3


 =




2
3/5
−6/5


 .

So the antiderivative of 4e2x − 3e2x in the vector space V is
2e2x + 3

5e2x cos x − 6
5e2x sin x , and we can deduce that∫

(4e2x − 3e2x sin x) dx = 2e2x + 3
5e2x cos x − 6

5e2x sin x + C where C
denotes a constant.
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Linear transformations and diagonalisation

In an applied problem involving Rn, a linear transformation T usually
appears as a matrix transformation x 7→ Ax. If A is diagonalisable, then
there is a basis B for Rn consisting of eigenvectors of A. In this case the
B-matrix for T is diagonal, and diagonalising A amounts to finding a
diagonal matrix representation of x 7→ Ax.

Theorem
Suppose A = PDP−1, where D is a diagonal n× n matrix. If B is the basis
for Rn formed by the columns of P, then D is the B-matrix for the
transformation x 7→ Ax.
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Proof.
Denote the columns of P by b1,b2, . . . ,bn, so that B = {b1,b2, . . . ,bn}
and

P =
[
b1 b2 · · · bn

]
.

In this case, P is the change of coordinates matrix PB where

P[x]B = x and [x]B = P−1x.

If T is defined by T (x) = Ax for x in Rn, then

[T ]B =
[
[T (b1)]B · · · T (bn)]B

]

=
[
[Ab1]B · · · [Abn]B

]

=
[
P−1Ab1 · · · P−1Abn

]

= P−1A
[
b1 b2 · · · bn

]

= P−1AP = D
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In the proof of the previous theorem the fact that D is diagonal is never
used. In fact the following more general result holds:

If an n × n matrix A is similar to a matrix C with A = PCP−1, then C is
the B-matrix of the transformation x→ Ax where B is the basis of Rn

formed by the columns of P.
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Example
Example 15

Consider the matrix A =
[
4 −2
−1 3

]
. T is the linear transformation

T : R2 → R2 defined by T (x) = Ax. We find a basis B for R2 with the
property that [T ]B is diagonal.

The first step is to find the eigenvalues and corresponding eigenspaces for
A:

det(A− λI) = det
[
4− λ −2
−1 3− λ

]

= (4− λ)(3− λ)− 2
= λ2 − 7λ+ 10
= (λ− 2)(λ− 5).
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The eigenvalues of A are λ = 2 and λ = 5. We need to find a basis vector
for each of these eigenspaces.

E2 = Nul
[
2 −2
−1 1

]

= Span
{[

1
1

]}

E5 = Nul
[
−1 −2
−1 −2

]

= Span
{[
−2
1

]}
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Put B =
{[

1
1

]
,

[
−2
1

]}
.

Then [T ]B = D =
[
2 0
0 5

]
, and with P =

[
1 −2
1 1

]
and P−1AP = D, or

equivalently, A = PDP−1.
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Overview

We’ve looked at eigenvalues and eigenvectors from several perspectives,
studying how to find them and what they tell you about the linear
transformation associated to a matrix.
Question
What happens when the characteristic equation has complex roots?

From Lay, §5.5
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Warm-up unquiz for review

Suppose that a linear transformation T : R2 → R2 acts as shown in the
picture:

a

T(b)

c

T(a)

b T(c)

Write a matrix for T with respect to a basis of your choice.
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Existence of Complex Eigenvalues

Since the characteristic equation of an n × n matrix involves a polynomial
of degree n, there will be times when the roots of the characteristic
equation will be complex. Thus, even if we start out considering matrices
with real entries, we’re naturally lead to consider complex numbers.

We’ll focus on understanding what complex eigenvalues mean when the
entries of the matrix with which we are working are all real
numbers. For simplicity, we’ll restrict to the case of 2× 2 matrices.
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Example 1

Let A =
[
cosϕ − sinϕ
sinϕ cosϕ

]
for some real ϕ. The roots of the characteristic

equation are cosϕ± i sinϕ.

What does the linear transformation TA : R2 → R2 defined by TA(x) = Ax
(for all x ∈ R2) do to vectors in R2?
Since the i th column of the matrix is T (ei), we see that the linear
transformation TA is the transformation that rotates each point in R2

about the origin through an angle ϕ, with counterclockwise rotation for a
positive angle.
A rotation in R2 cannot have a real eigenvector unless ϕ = 2kπ or
ϕ = π + 2kπ for k ∈ Z!

What about (complex) eigenvectors for such an A?
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Let’s take ϕ = π/3, so that multiplication by A corresponds to a rotation
through π/3 (600). Then we get

A =
[
cos π/3 − sinπ/3
sinπ/3 cos π/3

]
=
[
1/2 −

√
3/2√

3/2 1/2

]

What happens when we try to find eigenvalues and eigenvectors?

The characteristic polynomial of A is

(1/2− λ)2 + (
√
3/2)2 = λ2 − λ+ 1

and the eigenvalues are

λ = 1±
√
1− 4
2 = 1

2 ±
√
3
2 i .
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Take λ1 = 1
2 +
√
3
2 i . We find the eigenvectors in the usual way by solving

(A− λ1I)x = 0.

A− λ1I =
[
−i
√
3/2 −

√
3/2√

3/2 −i
√
3/2

]
→
[
i 1
0 0

]
.

We solve the associated equation as usual, so we see that ix + y = 0.

Thus one possible eigenvector is x1 =
[
1
−i

]
.

(All the other associated eigenvectors are of the form αx1 =
[
α
−iα

]
, where

α is any non-zero number in C.)

For λ2 = 1
2 −
√
3
2 i we get x2 =

[
1
i

]
as an associated complex eigenvector.

(All the other associated eigenvectors are of the form αx2 =
[
α
iα

]
, where

α is any non-zero number in C.)
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We can check that these two vectors are in fact eigenvectors:

Ax1 =
[
1/2 −

√
3/2√

3/2 1/2

] [
1
−i

]

=
[
1/2 + i

√
3/2√

3/2− i/2

]

=
(
1
2 +
√
3
2 i
)[

1
−i

]
.

Similarly,

Ax2 =
(
1
2 −
√
3
2 i
)[

1
i

]
.
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Example 2

Find the eigenvectors associated to the matrix
[
5 −2
1 3

]
.

The characteristic polynomial is

det
[
5− λ −2
1 3− λ

]
= (5− λ)(3− λ) + 2 = λ2 − 8λ+ 17.

The roots are

λ = 8±
√
64− 68
2 = 8±

√
−4

2 = 8± 2i
2 = 4± i .

Since complex roots always come in conjugate pairs, it follows that if
a + bi is an eigenvalue for A, then a − bi will also be an eigenvalue for A.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 8 / 34

Take λ1 = 4 + i . We find a corresponding eigenvector:

A− λ1I =
[
5− (4 + i) −2

1 3− (4 + i)

]
=
[
1− i −2
1 −1− i

]

Row reduction of the usual augmented matrix is quite unpleasant by hand
because of the complex numbers.
However, there is an observation that simplifies matters: Since 4 + i is an
eigenvalue, the system of equations

(1− i)x1 − 2x2 = 0
x1 − (1 + i)x2 = 0

has a non trivial solution.
Therefore both equations determine the same relationship between x1 and
x2, and either equation can be used to express one variable in terms of the
other.
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As these two equations both give the same information, we can use the
second equation. It gives

x1 = (1 + i)x2,

where x2 is a free variable. If we take x2 = 1, we get x1 = 1 + i and hence

an eigenvector is x1 =
[
1 + i
1

]
.

If we take λ2 = 4− i , and proceed as for λ1 we get that x2 =
[
1− i
1

]
is a

corresponding eigenvector.

Just as the eigenvalues come in a pair of complex conjugates, and so do
the eigenvectors.
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Normal form

When a matrix is diagonalisable, it’s similar to a diagonal matrix:
A = PDP−1.
It’s also similar to many other matrices, but we think of the diagonal
matrix as the “best" representative of the class, in the sense that it
expresses the associated linear transformation with respect to a most
natural basis (i.e., a basis of eigenvectors.)
Of course, not all matrices are diagonalisable, so today we consider the
following question:

Question
Given an arbitrary matrix, is there a “best" representative of its similarity
class?

“Best" isn’t a precise term, but let’s interpret this as asking whether
there’s some basis for which the action of the associate linear
transformation is most transparent.
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Example 3

Consider the matrix



0 −1 0
0 0 −1
1 0 0


.

The characteristic polynomial is 1− λ3, with roots 1,−1± i
√
3
2 , the three

cube roots of unity in C.
A choice of corresponding eigenvectors is, for example,



1
−1
1


 ,




−1 + i
√
3
2

1 + i
√
3
2

1



,




−1− i
√
3
2

1− i
√
3
2

1



.

Notice that we have one real eigenvector corresponding to the real
eigenvalue 1, and two complex eigenvectors corresponding to the complex
eigenvalues. Notice that also in this case the complex eigenvalues and
eigenvectors come in pairs of conjugates.
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Advantages of complex linear algebra

Doing computations by hand is messier when we work over C, but much of
the theory is cleaner! When the scalars are complex, rather than real

matrices always have eigenvalues and eigenvectors; and
every linear transformation T : Cn → Cn can be represented by an
upper triangular matrix.

We don’t have time to explore the implications fully, but we can take a
quick look at some of the interesting structure that emerges immediately.
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A real matrix acting on C

Eigenvalues come in conjugate pairs.
If A is an m × n matrix with entries in C , then Ā denotes the matrix
whose entries are the complex conjugates of the entries in A.
Let A be an n × n matrix whose entries are real. Then A = A. So

Ax = Ax = Ax

for any vector x ∈ Cn.
If λ is an eigenvalue of A and x is a corresponding eigenvector in Cn, then

Ax = Ax = λx = λx.

This shows that λ is also an eigenvalue of A with x a corresponding
eigenvector.
So...
...when A is a real matrix, its complex eigenvalues occur in conjugate pairs.
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Some special 2× 2 matrices

Consider the matrix C =
[
a −b
b a

]
, where a and b are real numbers and

not both 0.
C − Iλ =

[
a − λ −b
b a − λ

]
,

so the characteristic equation for C is

0 = (a − λ)2 + b2 = λ2 − 2aλ+ a2 + b2.

Using the quadratic formula, the eigenvalues of C are

λ = a ± bi .

So if b 6= 0, the eigenvalues are not real.
Notice that this generalises our earlier observation about rotation matrices.
In fact...
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...apply some magic...
If we now take r = |λ| =

√
a2 + b2 then we can write

C = r
[
a/r −b/r
b/r a/r

]
=
[
r 0
0 r

] [
cosϕ − sinϕ
sinϕ cosϕ

]

where ϕ is the angle between the positive x -axis and the ray from (0, 0)
through (a, b). Here we used the fact that

(a
r

)2
+
(b
r

)2
= a2 + b2

r2 = r2

r2 = 1 .

Thus the point (a/r , b/r) lies on the circle of radius 1 with center at the
origin and a/r , b/r can be seen as the cosine and sine of the angle
between the positive x -axis and the ray from (0, 0) through (a/r , b/r)
(which is the same as the angle between the positive x -axis and the ray
from (0, 0) through (a, b)).

The transformation x 7→ Cx may be viewed as the composition of a
rotation through the angle ϕ and a scaling by r = |λ|.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 16 / 34

The angle ϕ
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The action of C
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Example 4

What is the geometric action of C =
[
1 −1
1 1

]
on R2?

From what we’ve just seen, C has eigenvalues λ = 1± i , so
r =
√
12 + 12 =

√
2. We can therefore rewrite C as

C =
√
2
[
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

]
=
√
2
[
cos π/4 − sinπ/4
sinπ/4 cos π/4

]
.

So C acts as a rotation through π/4 together with a multiplication by
√
2.
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To verify this, we look at the repeated action of C on a point x0 =
[
1
0

]
.

(Note |x0| = 1.)

x1 = Cx0 =
[
1 −1
1 1

] [
1
0

]
=
[
1
1

]
, ||x1|| =

√
2,

x2 = Cx1 =
[
1 −1
1 1

] [
1
1

]
=
[
0
2

]
, ||x2|| = 2,

x3 = Cx2 =
[
1 −1
1 1

] [
0
2

]
=
[
−2
2

]
, ||x3|| = 2

√
2, . . .

If we continue, we’ll find a spiral of points each one further away from
(0, 0) than the previous one.
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Real and imaginary parts of vectors
The complex conjugate of a complex vector x in Cn is the vector x̄ in Cn

whose entries are the complex conjugates of the entries in x.
The real and imaginary parts of a complex vector x are the vectors Re x
and Im x formed from the real and imaginary parts of the entries of x.

If x =



1 + 2i
−3i
5


 =



1
0
5


+ i



2
−3
0


, then

Re x =



1
0
5


 , Im x =



2
−3
0


 , and

x̄ =



1
0
5


− i



2
−3
0


 =



1− 2i
3i
5


 .

We’ll use this idea in the next example.
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The rotation hidden in a real matrix with a complex
eigenvalue

Example 5

Show that A =
[
2 1
−2 0

]
is similar to a matrix of the form A =

[
a −b
b a

]

The characteristic polynomial of A is

det
[
2− λ 1
−2 −λ

]
= (2− λ)(−λ) + 2 = λ2 − 2λ+ 2.

So A has complex eigenvalues

λ = 2±
√
4− 8
2 = 2± 2i

2 = 1± i .
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Take λ1 = 1− i . To find a corresponding eigenvector we find A− λ1I:

A− λ1I =
[
2− (1− i) 1
−2 0− (1− i)

]
=
[
1 + i 1
−2 −1 + i

]

We can use the first row of the matrix to solve (A− λ1I)x = 0:

(1 + i)xi + x2 = 0 or x2 = −(1 + i)x1.

If we take x1 = 1 we get an eigenvector

v1 =
[

1
−1− i

]
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We now construct a real 2× 2 matrix P:

P =
[
Re v1 Im v1

]
=
[
1 0
−1 −1

]
.

We have not justified why we would try this!

Note that P−1 =
[
1 0
−1 −1

]
.

Then calculate

C = P−1AP

=
[
1 0
−1 −1

] [
2 1
−2 0

] [
1 0
−1 −1

]

=
[
1 −1
1 1

]
.
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We recognise this matrix, from the previous example, as the composition
of a counterclockwise rotation by π/4 and a scaling by

√
2. This is the

rotation “inside” A. We can write A:

A = PCP−1 = P
[
1 −1
1 1

]
P−1.

From the last lecture, we know that C is the matrix of the linear

transformation x→ Ax relative to the basis B =
{[

1
−1

]
,

[
0
−1

]}
formed

by the columns of P.
This shows that when we represent the transformation in terms of the basis
B, the transformation x→ Ax “looks like" the composition of a scaling
and a rotation. As promised, using a non-standard basis we can sometimes
uncover the hidden geometric properties of a linear transformation!
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Example 6

Consider the matrix A =
[
1 −1
1 0

]
.

The characteristic polynomial of A is given by

det
[
1− λ −1
1 −λ

]
= (1− λ)(−λ) + 1 = λ2 − λ+ 1.

This is the same polynomial as for the matrix in Example 1. So we know
that A has complex eigenvalues and therefore complex eigenvectors.
To see how multiplication by A affects points, take an arbitrary point, say

x0 =
[
1
1

]
, and then plot successive images of this point under repeated

multiplication by A.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 26 / 34

The first few points are

x1 = Ax0 =
[
1 −1
1 0

] [
1
1

]
=
[
0
1

]
,

x2 = Ax1 =
[
1 −1
1 0

] [
0
1

]
=
[
−1
0

]
,

x3 = Ax2 =
[
1 −1
1 0

] [
−1
0

]
=
[
−1
−1

]
,

x4 = Ax3 =
[
1 −1
1 0

] [
−1
−1

]
=
[
0
−1

]
, . . .

You could try this also for matrices
[
0.1 −0.2
0.1 0.3

]
and

[
2 1
−2 0

]
.
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The theorem (and why it’s true)

Theorem
Let A be a 2× 2 matrix with a complex eigenvalue λ = a− bi (b 6= 0) and
an associated eigenvector v in C2. Then

A = PCP−1, where P =
[
Re v Im v

]

and C =
[
a −b
b a

]
.
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Sketch of proof
Suppose that A is a real 2× 2 matrix, with a complex eigenvalue
λ = a − ib, b 6= 0, and a corresponding complex eigenvector v = v1 + iv2
where v1, v2 ∈ R2. Then

v2 6= 0 because otherwise Av = Av1 would be real, whereas λv = λv1
is not.
If v1 = αv2, for some (necessarily real) α,

A(v) = A
(
(α + i)v2

)
= (α + i)Av2 = (α + i)λv2

whence the real vector Av2 equals λv2 which is not real.
Thus the real vectors v1, v2 are linearly independent, and give a basis for
R2.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 29 / 34

Equate the real and imaginary parts in the two formulas

Av = (a − ib)v = (a − ib)(v1 + iv2) = (av1 + bv2) + i(av2 − bv1) ,

and
Av = A(v1 + iv2) = Av1 + iAv2.

This gives Av1 = av1 + bv2 and Av2 = av2 − bv1 so that

A
[
v1 v2

]
=

[
Av1 Av2

]

=
[
av1 + bv2 av2 − bv1

]

=
[
v1 v2

] [a −b
b a

]
.

So with respect to the basis B = {v1, v2}, the transformation TA has
matrix [

v1 v2
]−1

A
[
v1 v2

]
=
[
a −b
b a

]
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Setting sinϕ = b√
a2 + b2 , cosϕ = a√

a2 + b2 ,

[
a −b
b a

]
=
√
a2 + b2

[
cosϕ − sinϕ
sinϕ cosϕ

]
,

which is a scaling and rotation. And all of this is determined by the
complex eigenvalue a − ib.
Of course, if a − ib is an eigenvalue with eigenvector v1 + iv2, a + ib is an
eigenvalue, with eigenvector v1 − iv2.
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Example 7

What is the geometric action of A =
[
−5 −5
5 −5

]
on R2?

As a first step we find the eigenvalues and eigenvectors associated with A.

det(A− λI) =
[
−5− λ −5

5 −5− λ

]

= (−5− λ)2 + 25
= λ2 + 10λ+ 50

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 32 / 34

This gives

λ = −10±
√
100− 200
2 = −10± 10i

2 = −5± 5i .

Consider the eigenvalue λ = −5− 5i . We will find the corresponding
eigenspace:

Eλ = Nul (A− λI)

= Nul
[
5i −5
5 5i

]

= Span
{[

1
i

]}

where Span here stands for complex span, that is the set of all scalar

multiples α
[
1
i

]
=
[
α
iα

]
of
[
1
i

]
, where α is in C.
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Choosing
[
1
i

]
as our eigenvector we find the associated matrices P and C :

P =
[
1 0
0 1

]
, C =

[
−5 −5
5 −5

]
.

It is easy to check that

A = PCP−1 or equivalently AP = PC .

Further
C =

[
−5 −5
5 −5

]
= 5
√
2
[
−1/
√
2 −1

√
2

1/
√
2 −1/

√
2

]

The scaling factor is 5
√
2. The angle of rotation is given by

cosϕ = −1/
√
2, sinϕ = 1/

√
2, which gives φ = 3π/4 (135◦).
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Overview

Yesterday we studied how real 2× 2 matrices act on C. Just as the action
of a diagonal matrix on R2 is easy to understand (i.e., scaling each of the
basis vectors by the corresponding diagonal entry), the action of a matrix

of the form
[

a −b
b a

]
determines a composition of rotation and scaling.

We also saw that any 2× 2 matrix with complex eigenvalues is similar to
such a “standard" form.
Today we’ll return to the study of matrices with real eigenvalues, using
them to model discrete dynamical systems.

From Lay, §5.6
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The main ideas
In this section we will look at discrete linear dynamical systems. Dynamics
describe the evolution of a system over time, and a discrete system is one
where we sample the state of the system at intervals of time, as opposed
to studying its continuous behaviour. Finally, these systems are linear
because the change from one state to another is described by a vector
equation like

(∗) xk+1 = Axk .

where A is an n × n matrix and the xk ’s are vectors Rn.
You should look at the equation above as a recursive relation. Given an
initial vector x0 we obtain a sequence x0, x1, x2, . . . , .. where for every k the
vector xk+1 is obtained from the previous vector xk using the relation (∗).
We are generally interested in the long term behaviour of such a system.
The applications in Lay focus on ecological problems, but also apply to
problems in physics, engineering and many other scientific fields.
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Initial assumptions
We’ll start by describing the circumstances under which our techniques will
be effective:

The matrix A is diagonalisable.
A has n linearly independent eigenvectors v1, . . . , vn with
corresponding eigenvalues
λ1, . . . , λn.
The eigenvectors are arranged so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Since {v1, . . . , vn} is a basis for Rn, any initial vector x0 can be written

x0 = c1v1 + · · ·+ cnvn.

This eigenvector decomposition of x0 determines what happens to the
sequence {xk}.
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Since
x0 = c1v1 + · · ·+ cnvn,

we have

x1 = Ax0 = c1Av1 + · · ·+ cnAvn

= c1λ1v1 + · · ·+ cnλnvn

x2 = Ax1 = c1λ1Av1 + · · ·+ cnλnAvn

= c1(λ1)2v1 + · · ·+ cn(λn)2vn

and in general,
xk = c1(λ1)kv1 + · · ·+ cn(λn)kvn (1)

We are interested in what happens as k →∞.
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Predator - Prey Systems

Example
See Example 1, Section 5.6

The owl and wood rat populations at time k are described by xk =
[
Ok
Rk

]
,

where k is the time in months, Ok is the number of owls in the region
studied, and Rk is the number of rats (measured in thousands). Since owls
eat rats, we should expect the population of each species to affect the
future population of the other one.
The changes in theses populations can be described by the equations:

Ok+1 = (0.5)Ok + (0.4)Rk

Rk+1 = −p · Ok + (1.1)Rk

where p is a positive parameter to be specified.
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In matrix form this is
xk+1 =

[
0.5 0.4
−p 1.1

]
xk .

Example (Case 1)
p = 0.104

This gives A =
[

0.5 0.4
−0.104 1.1

]

According to the book, the eigenvalues for A are λ1 = 1.02 and λ2 = 0.58.
Corresponding eigenvectors are, for example,

v1 =
[
10
13

]
, v2 =

[
5
1

]
.
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An initial population x0 can be written as x0 = c1v1 + c2v2. Then for
k ≥ 0,

xk = c1(1.02)kv1 + c2(0.58)kv2

= c1(1.02)k
[
10
13

]
+ c2(0.58)k

[
5
1

]

As k →∞, (0.58)k → 0. Assume c1 > 0. Then for large k,

xk ≈ c1(1.02)k
[
10
13

]

and
xk+1 ≈ c1(1.02)k+1

[
10
13

]
≈ 1.02xk .
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The last approximation says that eventually both the population of rats
and the population of owls grow by a factor of almost 1.02 per month, a
2% growth rate.

The ratio 10 to 13 of the entries in xk remain the same, so for every 10
owls there are 13 thousand rats.

This example illustrates some general facts about a dynamical system
xk+1 = Axk when

|λ1| ≥ 1 and
1 > |λj | for j ≥ 2 and
v1 is an eigenvector associated with λ1.

If x0 = c1v1 + · · ·+ cnvn, with c1 6= 0, then for all sufficiently large k,

xk+1 ≈ λ1xk and xk ≈ c1(λ)kv1.
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Example (Case 2)
We consider the same system when p = 0.2 (so the predation rate is
higher than in the previous Example (1), where we had taken
p = 0.104 < 0.2). In this case the matrix A is

[
0.5 0.4
−0.2 1.1

]
.

Here
A− λI =

[
0.5− λ 0.4
−0.2 1.1− λ

]

and the characteristic equation is

0 = (0.5− λ)(1.1− λ) + (0.4)(0.2)
= 0.55− 1.6λ+ λ2 + 0.08
= λ2 − 1.6λ+ 0.63
= (λ− 0.9)(λ− 0.7)
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When λ = 0.9,

E0.9 = Nul
[
−0.4 0.4
−0.2 0.2

]
→ Nul

[
1 −1
0 0

]

and an eigenvector is v1 =
[
1
1

]
.

When λ = 0.7

E0.7 = Nul
[
−0.2 0.4
−0.2 0.4

]
→ Nul

[
1 −2
0 0

]

and an eigenvector is v2 =
[
2
1

]
.
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This gives

xk = c1(0.9)k
[
1
1

]
+ c2(0.7)k

[
2
1

]
→ 0,

as k →∞.
The higher predation rate cuts down the owls’ food supply, and in the long
term both populations die out.
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Example (Case 3)
We consider the same system again when p = 0.125. In this case the
matrix A is [

0.5 0.4
−0.125 1.1

]
.

Hence
A− λI =

[
0.5− λ 0.4
−0.125 1.1− λ

]

and the characteristic equation is

0 = (0.5− λ)(1.1− λ) + (0.4)(0.125)
= 0.55− 1.6λ+ λ2 + 0.05
= λ2 − 1.6λ+ 0.6
= (λ− 1)(λ− 0.6).
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When λ = 1,

E1 = Nul
[
−0.5 0.4
−0.125 0.1

]
→ Nul

[
1 −0.8
0 0

]

and an eigenvector is v1 =
[
0.8
1

]
.

When λ = 0.6

E0.6 = Nul
[
−0.1 0.4
−0.125 0.5

]
→ Nul

[
1 −4
0 0

]

and an eigenvector is v2 =
[
4
1

]
.
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This gives

xk = c1(1)k
[
0.8
1

]
+ c2(0.6)k

[
4
1

]
→ c1

[
0.8
1

]
,

as k →∞.
In this case the population reaches an equilibrium, where for every 8 owls
there are 10 thousand rats. The size of the population depends only on
the values of c1.
This equilibrium is not considered stable as small changes in the birth
rates or the predation rate can change the situation.
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Graphical Description of Solutions

When A is a 2× 2 matrix we can describe the evolution of a dynamical
system geometrically.
The equation xk+1 = Axk determines an infinite collection of equations.
Beginning with an initial vector x0, we have

x1 = Ax0

x2 = Ax1

x3 = Ax2
...

The set {x0, x1, x2, . . . } is called a trajectory of the system.
Note that xk = Akx0.
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Examples

Example 1

Let A =
[
0.5 0
0 0.8

]
. Plot the first five points in the trajectories with the

following initial vectors:

(a) x0 =
[
5
0

]
(b) x0 =

[
0
−5

]

(c) x0 =
[
4
4

]
(d) x0 =

[
−2
4

]

Notice that since A is already diagonal, the computations are much easier!
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(a) For x0 =
[
5
0

]
and A =

[
0.5 0
0 0.8

]
, we compute

x1 = Ax0 =
[
2.5
0

]
x2 = Ax1 =

[
1.25
0

]

x3 = Ax2 =
[
0.625
0

]
x4 = Ax3 =

[
0.3125

0

]

These points converge to the origin along the x -axis.

(Note that e1 =
[
1
0

]
is an eigenvector for the matrix).

(b) The situation is similar for the case x0 =
[
0
−5

]
, except that the

convergence is along the y -axis.
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(c) For the case x0 =
[
4
4

]
, we get

x1 = Ax0 =
[
2
3.2

]
x2 = Ax1 =

[
1

2.56

]

x3 = Ax2 =
[

0.5
2.048

]
x4 = Ax3 =

[
0.25

1.6384

]

These points also converge to the origin, but not along a direct line. The
trajectory is an arc that gets closer to the y -axis as it converges to the
origin.
The situation is similar for case (d) with convergence also toward the
y -axis.
In this example every trajectory converges to 0. The origin is called an
attractor for the system.
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We can understand why this happens when we consider the eigenvalues of

A: 0.8 and 0.5. These have corresponding eigenvectors
[
0
1

]
and

[
1
0

]
.

So, for an initial vector

x0 =
[
c1
c2

]
= c1

[
0
1

]
+ c2

[
1
0

]

we have
xk = Akx0 = c1(0.8)k

[
0
1

]
+ c2(0.5)k

[
1
0

]
.

Because both (0.8)k and (0.5)k approach zero as k gets large, xk
approaches 0 for any initial vector x0.

Because
[
0
1

]
is the eigenvector corresponding to the larger eigenvalue of

A, xk approaches a multiple of
[
0
1

]
as long as c1 6= 0.
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Graphical example
Dynamical system xk+1 = Axk, where

A =
[

.80 0

0 .64

]

x
2

x
1

x
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x
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x
0
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x
1

x
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FIGURE 1 The origin as an attractor.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.
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Example 2
Describe the trajectories of the dynamical system associated to the matrix

A =
[
1.7 −0.3
−1.2 0.8

]
.

The eigenvalues of A are 2 and 0.5, with corresponding eigenvectors

v1 =
[
−1
1

]
, v2 =

[
1
4

]
.

As above, the dynamical system xk+1 = Axk has solution

xk = 2kc1v1 + (.05)kc2v2

where c1, c2 are determined by x0.
Thus for x0 = v1, xk = 2kv1, and this is unbounded for large k, whereas
for x0 = v2, xk = (0.5)kv2 → 0.
In this example we see different behaviour in different directions. We
describe this by saying that the origin is a saddle point.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 21 / 39



Here are some trajectories with different starting points:

saddle

!"" #"" $""!!""!#""!$"""

!!""

!#""

!""

#""

If a starting point is closer to v2 it is initially attracted to the origin, and
when it gets closer to v1 it is repelled. If the initial point is closer to v1, it
is repelled.A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 22 / 39

Dynamical system xk+1 = Axk, where

A =
[
1.25 −.75

−.75 1.25

]

x
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x
2
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2
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x
1

x
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3
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2
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1
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0

FIGURE 4 The origin as a saddle point.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.
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Example 3
Describe the trajectories of the dynamical system associated to the matrix

A =
[
4 1
1 4

]
.

The characteristic polynomial for A is
(4− λ)2 − 1 = λ2 − 8λ+ 15 = (λ− 5)(λ− 3). Thus the eigenvalues are 5

and 3 and corresponding eigenvectors are
[
1
1

]
and

[
−1
1

]
.

Hence for any initial vector

x0 = c1

[
1
1

]
+ c2

[
−1
1

]

we have
xk = c15k

[
1
1

]
+ c23k

[
−1
1

]
.
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As k becomes large, so do both 5k and 3k . Hence xk tends away from the
origin.

Because the dominant eigenvalue 5 has corresponding eigenvector
[
1
1

]
, all

trajectories for which c1 6= 0 will end up in the first or third quadrant.
Trajectories for which c2 = 0 start and stay on the line y = x whose

direction vector is
[
1
1

]
. (They move away from 0 along this line, unless

x0 = 0).
Similarly, trajectories for which c1 = 0 start and stay on the line y = −x

whose direction vector is
[
−1
1

]
.

In this case 0 is called a repellor. This occurs whenever all eigenvalues
have modulus greater than 1.
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Dynamical system xk+1 = Axk, where

A =
[
1.44 0

0 1.2

]

x
1

x
2

FIGURE 2 The origin as a repellor.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.
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Example 4
Describe the trajectories of the dynamical system associated to the matrix

A =
[

0.5 0.4
−0.125 1.1

]
. (This was the final matrix in the owl/rat examples

earlier.)

Here the eigenvalues 1 and 0.6 have associated eigenvectors v1 =
[
4
5

]
and

v2 =
[
4
1

]
. So we have

xk = c1v1 + 0.6kc2v2 .

As k →∞, we have xk approaching the fixed point c1v1.
This situation is unstable – a small change to the entries can have a major
effect on the behaviour.
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For example with A :=
[

0.5 0.4
(−0.125) 1.1

]

value eigenvalue eigenvalue behaviour

−0.125 1 0.6 xk → c1v1

−0.1249 1.0099 0.5990 saddle point

−0.1251 0.9899 0.6010 xk → 0

This example comes from a model of populations of a species of owl and
its prey (Lay 5.6.4). In spite of the model being very simplistic, the
ecological implications of instability are clear.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 28 / 39

Complex eigenvalues
What about trajectories in the complex situation?
Consider the matrices

(a) A =
[
0.5 −0.5
0.5 0.5

]
, eigenvalues λ = 1

2 + i 1
2 , λ = 1

2 − i 1
2

where |λ| = |λ| =
√

(1
2)2 + (1

2)2 =
√

1
2 = 1√

2 < 1.

(b) A =
[
0.2 −1.2
0.6 1.4

]
, eigenvalues λ = 4

5 + i 3
5 , λ = 4

5 − i 3
5

where |λ| = |λ| =
√

(4
5)2 + (3

5)2 =
√

16
25 + 9

25 =
√
1 = 1.

If we plot the trajectories beginning with x0 =
[
4
4

]
for the dynamical

system xk+1 = Axk , we get some interesting results.

In case (a) the trajectory spirals into the origin, whereas for (b) it appears
to follow an elliptical orbit.
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For matrices with complex eigenvalues we can summarise as follows:
if A is a real 2× 2 matrix with complex eigenvalues λ = a ± bi then the
trajectories of the dynamical system xk+1 = Axk

spiral inward if |λ| < 1 (0 is a spiral attractor),
spiral outward if |λ| > 1 (0 is a spiral repellor),
and lie on a closed orbit if |λ| = 1 (0 is a orbital centre).
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FIGURE 5 Rotation associated with complex eigenvalues.

Chapter 5 Lay, Linear Algebra and Its Applications, Second Edition—Update

Copyright c© 2000 by Addison Wesley Longman. All rights reserved.
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Some further examples

Example 5

Let A =
[
0.8 0.5
−0.1 1.0

]
.

Here the eigenvalues are 0.9± 0.2i , with eigenvectors
[
1∓ 2i

1

]
. As we

noted in Section 18, setting P =
[
1 2
1 0

]
, cosϕ = 0.9√

0.85
, sinϕ = 0.2√

0.85
,

P−1AP =
[
0.9 −0.2
0.2 0.9

]
=
√
0.85

[
cosϕ − sinϕ
sinϕ cosϕ

]

a scaling (approximately 0.92) and a rotation (through approximately 44◦).
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P−1AP is the matrix of TA with respect to the basis of the columns of P.
Note that the rotation is anticlockwise.
Here are the trajectories with respect to the original axes. They go
clockwise, indicated by det(P) < 0.

spiral

1.00 2.00 3.00 4.00!1.00!2.00!3.00!4.0000

!1.00

!2.00

!3.00

1.00

2.00

3.00
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Example 6
(Lay 5.6.18) In a herd of buffalo, there are adults, yearlings and calves. On
average 42 female calves are borne to every 100 adult females each year,
60% of the female calves survive to become yearlings, and 75% of the
female yearlings survive to become adults, and 95% of the adults survive
to the next year.

This information gives the following relation:



adults
year ..s
calves




k+1

=



0.95 0.75 0
0 0 0.60

0.42 0 0







adults
year ..s
calves




k

Assuming that there are sufficient adult males, what are the long term
prospects for the herd?
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Eigenvalues are approximately

1.1048,−0.0774± 0.4063i .

The complex eigenvalues have modulus approximately 0.4136.

Corresponding eigenvectors are approximately v1 =



100.0
20.65
38.0


, and a

complex conjugate pair v2, v3.
Thus in the complex setting

xk = 1.1048kc1v1 +(−0.0774 + 0.4063i)kc2v2
+(−0.0774− 0.4063i)kc3v3.
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The last two terms go to 0 as k →∞, so in the long term the population
of females is determined by the first term, which grows at about 10.5% a
year. The distribution of females is 100 adults to 21 yearlings to 38
calves.
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Survival of the Spotted Owls

In the introduction to this chapter the survival of the spotted owl
population is modelled by the system xk+1 = Axk where

xk =




jk
sk
ak


 and A =




0 0 0.33
0.18 0 0
0 0.71 0.94




where xk lists the numbers of females at time k in the juvenile, subadult
and adult life stages.
Computations give that the eigenvalues of A are approximately
λ1 = 0.98, λ2 = −0.02 + 0.21i , and λ3 = −0.02− 0.21i . All eigenvalues
are less than 1 in magnitude, since
|λ2|2 = |λ3|2 = (−0.02)2 + (0.21)2 = 0.0445.
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Denote corresponding eigenvectors by v1, v2, and v3. the general solution
of xk+1 = Axk has the form

xk = c1(λ1)kv1 + c2(λ2)kv2 + c3(λ3)kv3.

Since all three eigenvalues have magnitude less than 1, all the terms on
the right of this equation approach the zero vector. So the sequence xk
also approaches the zero vector.
So this model predicts that the spotted owls will eventually perish.
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However if the matrix describing the system looked like


0 0 0.33
0.3 0 0
0 0.71 0.94


 instead of




0 0 0.33
0.18 0 0
0 0.71 0.94




then the model would predict a slow growth in the owl population. The
real eigenvalue in this case is λ1 = 1.01, with |λ1| > 1.
The higher survival rate of the juvenile owls may happen in different areas
from the one in which the original model was observed.
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Overview

Last time we studied the evolution of a discrete linear dynamical system,
and today we begin the final topic of the course (loosely speaking).
Today we’ll recall the definition and properties of the dot product. In the
next two weeks we’ll try to answer the following questions:

Question
What is the relationship between diagonalisable matrices and vector
projection? How can we use this to study linear systems without exact
solutions?

From Lay, §6.1, 6.2
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Motivation for the inner product

A linear system Ax = b that arises from experimental data often has
no solution. Sometimes an acceptable substitute for a solution is a
vector x̂ that makes the distance between Ax̂ and b as small as
possible (you can see this x̂ as a good approximation of an actual
solution). As the definition for distance involves a sum of squares, the
desired x̂ is called a least squares solution.
Just as the dot product on Rn helps us understand the geometry of
Euclidean space with tools to detect angles and distances, the inner
product can be used to understand the geometry of abstract vector
spaces.

In this section we begin the development of the concepts of orthogonality
and orthogonal projections; these will play an important role in finding x̂.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 2 / 22

Recall the definition of the dot product:

Definition

The dot (or scalar or inner) product of two vectors u =




u1
...

un


 , v =




v1
...

vn


 in

Rn is the scalar

(u, v) = u·v = uT v

=
[
u1 · · · un

]



v1
...

vn


 = u1v1 + · · ·+ unvn .

The following properties are immediate:
(a) u·v = v·u
(b) u·(v + w) = u·v + u·w
(c) k(u·v) = (ku)·v = u·(kv), k ∈ R
(d) u·u ≥ 0, u·u = 0 if and only if u = 0.
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Example 1
Consider the vectors

u =




1
3
−2
4


 , v =




−1
0
3
−2




Then

u·v = uT v

=
[
1 3 −2 4

]



−1
0
3
−2




= (1)(−1) + (3)(0) + (−2)(3) + (4)(−2)
= −15
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The length of a vector

For vectors in R3, the dot product recovers the length of the vector:

‖u‖ =
√

u·u =
√

u2
1 + u2

2 + u2
3 .

We can use the dot product to define the length of a vector in an arbitrary
Euclidean space.

Definition
For u ∈ Rn, the length of u is

‖u‖ =
√

u·u =
√

u2
1 + · · ·+ u2n.

It follows that for any scalar c, the length of cv is |c| times the length of v:

‖cv‖ = |c|‖v‖.
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Unit Vectors
A vector whose length is 1 is called a unit vector
If v is a non-zero vector, then

u = v
‖v‖

is a unit vector in the direction of v. To see this, compute

||u||2 = u · u
= v
‖v‖ ·

v
‖v‖

= 1
||v||2 v · v

= 1
||v||2 ||v||

2

= 1 (1)

Replacing v by the unit vector v
||v|| is called normalising v.
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Example 2

Find the length of u =




1
−3
0
2


 .

||u|| =
√

u · u =

√√√√√√√√







1
−3
0
2


 ·




1
−3
0
2





 =

√
1 + 9 + 4 =

√
14.
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Orthogonal vectors

The concept of perpendicularity is fundamental to geometry. The dot
product generalises the idea of perpendicularity to vectors in Rn.

Definition
The vectors u and v are orthogonal to each other if u·v = 0.

Since 0·v = 0 for every vector v in Rn, the zero vector is orthogonal to
every vector.
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Orthogonal complements
Definition
Suppose W is a subspace of Rn. If the vector z is orthogonal to every w in
W , then z is orthogonal to W .

Example 3

The vector




0
0
1


 is orthogonal to W = Span








1
−1
0


 ,




1
1
0







.

Example 4

We can also see that




1
0
0
0


 is orthogonal to Nul

[
1 1 1 1
0 1 1 1

]
.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 9 / 22



Definition
The set of all vectors x that are orthogonal to W is called the orthogonal
complement of W and is denoted by W ⊥.

W ⊥ = {x ∈ Rn | x · y = 0 for all y ∈W }

From the basic properties of the inner product it follows that
A vector x is in W ⊥ if and only if x is orthogonal to every vector in a
set that spans W .
W ⊥ is a subspace
W ∩W ⊥ = 0 since 0 is the only vector orthogonal to itself.
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Example 5

Let W = Span







1
2
−1







. Find a basis for W ⊥, the orthogonal

complement of W .

W ⊥ consists of all the vectors




x
y
z


for which



1
2
−1


 ·




x
y
z


 = 0.

For this we must have x + 2y − z = 0, which gives x = −2y + z .
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Thus 


x
y
z


 =



−2y + z

y
z


 = y



−2
1
0


 + z



1
0
1


 .

So a basis for W ⊥ is given by






−2
1
0


 ,



1
0
1








.

Since W = Span







1
2
−1







, we can check that every vector in W ⊥ is

orthogonal to every vector in W .
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Example 6

Let V = Span








1
3
3
1


 ,




3
−1
−1
3







. Find a basis for V ⊥.

V ⊥ consists of all the vectors




a
b
c
d


 in R4 that satisfy the two conditions




a
b
c
d


 ·




1
3
3
1


 = 0 and




a
b
c
d


 ·




3
−1
−1
3


 = 0
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This gives a homogeneous system of two equations in four variables:
a +3b +3c +d = 0

3a −b −c +3d = 0
Row reducing the augmented matrix we get

[
1 3 3 1 0
3 −1 −1 3 0

]
→

[
1 0 0 1 0
0 1 1 0 0

]

So c and d are free variables and the general solution is



a
b
c
d


 =




−d
−c
c
d


 = d




−1
0
0
1


 + c




0
−1
1
0




The two vectors in the parametrisation above are linearly independent, so
a basis for V ⊥ is 







−1
0
0
1


 ,




0
−1
1
0







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Notice that in the previous example (and also in the one before it) we
found the orthogonal complement as the null space of a matrix.
We have

V ⊥ = Nul A

where
A =

[
1 3 3 1
3 −1 −1 3

]

is the matrix whose ROWS are the transpose of the column vectors in the
spanning set for V .
To find a basis for the null space of this matrix we just proceeded as usual
by bringing the augmented matrix for Ax = 0 to reduced row echelon form.
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Theorem
Let A be an m × n matrix.

The orthogonal complement of the row space of A is the null space of A.
The orthogonal complement of the column space of A is the null space of
AT .

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT .

(Remember, Row A is the span of the rows of A.)
Proof The calculation for computing Ax (multiply each row of A by the
column vector x) shows that if x is in Nul A, then x is orthogonal to each
row of A. Since the rows of A span the row space, x is orthogonal to every
vector in RowA.
Conversely, if x is orthogonal to Row A, then x is orthogonal to each row
of A, and hence Ax = 0.
The second statement follows since Row AT = Col A.
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Example 7

Let A =
[
1 0 −1
2 0 −2

]
.

Then Row A = Span







1
0
−1







.

Nul A = Span







1
0
1


 ,



0
1
0








Hence (Row A)⊥ = Nul A.
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Recall A =
[
1 0 −1
2 0 −2

]
.

Col A = Span
{[

1
2

]}
.

Nul AT = Span
{[
−2
1

]}
.

Clearly, (Col A)⊥ = Nul AT .
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An important consequence of the previous theorem.
Theorem
If W is a subspace of Rn , then dimW + dimW ⊥ = n

Choose vectors w1, w2, . . . , wp such that W = Span{w1, . . . , wp}. Let

A =




wT
1

wT
2
...

wT
p




be the matrix whose rows are wT
1 , . . . , wT

p .
Then W = RowA and W ⊥ = (RowA)⊥ = Nul A. Thus

dimW = dim(RowA) = RankA
dimW ⊥ = dim(Nul A)

and the Rank Theorem implies
dimW + dimW ⊥ = RankA + dim(Nul A) = n
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Example 8

Let W = Span







1
4
3








. Describe W ⊥.

We see first that dimW = 1 and W is a line through the origin in R3.
Since we must have dimW + dimW ⊥ = 3, we can then deduce that
dimW ⊥ = 2: W ⊥ is a plane through the origin.
In fact, W ⊥ is the set of all solutions to the homogeneous equation
coming from this equation:




x
y
z


 ·



1
4
3


 = 0.

That is,
x + 4y + 3z = 0 .

We recognise this as the equation of the plane through the origin in R3

with normal vector 〈1, 4, 3〉 = w.
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Basis Theorem

Theorem
If B = {b1, . . . , bm} is a basis for W and C = {c1, . . . , cr} is a basis for
W ⊥, then {b1, . . . , bm, c1, . . . , cr} is a basis for Rm+r .

It follows that if W is a subspace of Rn, then for any vector v, we can write

v = w + u,

where w ∈W and u ∈W ⊥.
If W is the span of a nonzero vector in R3, then w is just the vector
projection of v onto this spanning vector.
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Example 9

Let W = Span








1
1
0
1


 ,




1
1
1
0







. Decompose v =




2
1
1
3


 as a sum of vectors in

W and W ⊥.

To start, we find a basis for W ⊥ and then write v in terms of the bases for
W and W ⊥.
We’re given a basis for W in the problem, and

W ⊥ = Span








1
−1
0
0


 ,




1
0
−1
−1








Therefore v = 2







1
1
0
1





 +







1
−1
0
0


−




1
0
−1
−1





 =




2
2
0
2


 +




0
−1
1
1


.
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Overview

Last time
we defined the dot product on Rn;
we recalled that the word “orthogonal" describes a relationship
between two vectors in Rn;
we extended the definition of the word “orthogonal" to describe a
relationship between a vector and a subspace;
we defined the orthogonal complement W⊥ of the the subspace W to
be the subspace consisting of all the vectors orthogonal to W .

Today we’ll extend the definition of the word “orthogonal" yet again. We’ll
also see how orthogonality can determine a particularly useful basis for a
vector space.

From Lay, §6.2
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Definition of an orthogonal set

Definition
A set S ⊂ Rn is orthogonal if its elements are pairwise orthogonal.

Example 1
Let U = {u1, u2, u3} where

u1 =




3
−2
1
3


 , u2 =




−1
3
−3
4


 , u3 =




3
8
7
0


 .

To show that U is an orthogonal set we need to show that
u1·u2 = 0, u1·u3 = 0 and u2·u3 = 0.
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Example 2
The set {w1, w2, w3} where

w1 =




5
−4
0
3


 , w2 =




−4
1
−3
8


 , w3 =




3
3
5
−1




is not an orthogonal set.

We note that w1·w2 = 0, w1·w3 = 0 but w2·w3 = −32 6= 0.
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Theorem (1)
If S = {v1, v2, . . . , vk} is an orthogonal set of nonzero vectors in Rn,

then S is a linearly independent set, and hence is a basis for the subspace
spanned by S.

Proof:
Suppose that c1, c2, . . . , ck are scalars such that

c1v1 + · · ·+ ckvk = 0.

Then

0 = 0·v1 = (c1v1 + · · ·+ ckvk)·v1

= c1(v1·v1) + c2(v2·v1) + · · ·+ ck(vk ·v1)
= c1(v1·v1)

since v1 is orthogonal to v2, . . . , vk .
Since v1 is nonzero, v1·v1, and so c1 = 0.
A similar argument shows that c2, . . . , ck must be zero.
Thus S is linearly independent.
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Definition
An orthogonal basis for a subspace W of Rn is a basis of W that is an
orthogonal set.
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Example 3

Given




1
2
1
0


 ,




1
−1
1
3


 ,




2
−1
0
−1


, find a nonzero vector x =




a
b
c
d


 so that the four

vectors form an orthogonal set.

We are looking for a vector that satisfies the three conditions



a
b
c
d


 ·




1
2
1
0


 = 0,




a
b
c
d


 ·




1
−1
1
3


 = 0,




a
b
c
d


 ·




2
−1
0
−1


 = 0

This gives a homogeneous system of three equations in the four variables
a, b, c, d , which reduces the problem to one we already know how to solve.
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We solve the system

a +2b +c = 0
a − b +c +3d = 0
2a − b − d = 0.

The coefficient matrix of this system is

A =



1 2 1 0
1 −1 1 3
2 −1 0 −1




the matrix whose rows are the transpose of the given vectors and the
orthogonality condition is indeed Ax = 0 (which gives the above system).
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Row reducing the augmented matrix of this system we get

[A|0] =




1 2 1 0 0
1 −1 1 3 0
2 −1 0 −1 0


 rref−−→




1 0 0 −1 0
0 1 0 −1 0
0 0 1 3 0




Thus d is free, and a = b = d , c = −3d .

So the general solution to the system is x = d




1
1
−3
1


 and every choice of

d 6= 0 gives a vector as required. For example taking d = 1 we get the
orthogonal set 







1
2
1
0


 ,




1
−1
1
3


 ,




2
−1
0
−1


 ,




1
1
−3
1








This is an orthogonal basis for R4.
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An advantage of working with an orthogonal basis is that the coordinates
of a vector with respect to that basis are easily determined.

Theorem (2)
Let {v1, . . . , vk} be an orthogonal basis for a subspace W of Rn, and let

w be any vector in W . Then the unique scalars c1, . . . , ck such that

w = c1v1 + · · ·+ ckvk

are given by
ci = w·vi

vi ·vi
for i = 1, . . . , k.
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Proof Since {v1, . . . , vk} is a basis for W , we know that there are unique
scalars c1, c2, . . . , ck such that w = c1v1 + · · ·+ ckvk .
To solve for c1, we take the dot product of this linear combination with vi :

w·v1 = (c1v1 + · · ·+ ckvk)·v1

= c1(v1·v1) + · · ·+ ci(vi ·v1) + · · ·+ ck(vk ·v1)
= c1(v1·v1)

since vj ·v1 = 0 for j 6= 1.
Since v1 6= 0, v1·v1 6= 0. Dividing by v1·v1, we obtain the desired result

c1 = w·v1
v1·v1

.

Similar results follow for c = 2, . . . , k.
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Example 4
Consider the orthogonal basis for R3:

U =







3
−3
0


 ,



2
2
−1


 ,



1
1
4








.

Express x =



4
2
−1


 in U coordinates.

First, check that U really is an orthogonal basis for R3:

u1·u2 = u1·u3 = u2·u3 = 0.

Hence the set {u1, u2, u3} is an orthogonal set, and since none of the
vectors is the zero vector, the set is linearly independen a basis for R3.
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Recall from Theorem (2) that the ui coordinate of x is given by x·vi
vi ·vi

. We
compute

x·u1 = 6, x·u2 = 13, x·u3 = 2,

u1·u1 = 18, u2·u2 = 9, u3·u3 = 18.

Hence

x = x·u1
u1·u1

u1 + x·u2
u2·u2

u2 + x·u3
u3·u3

u3

= 6
18u1 + 13

9 u2 + 2
18u3

= 1
3u1 + 13

9 u2 + 1
9u3.

So x =




1
3

13
9

1
9



U

.
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Finally, note that if P =
[
u1 u2 u3

]
=



3 2 1
−3 2 1
0 −1 4


, then

PT P =



18 0 0
0 9 0
0 0 18


 .

The diagonal form is because the vectors form an orthogonal set, diagonal
entries are the squares of the lengths of the vectors.
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Orthonormal sets

Definition
A set {u1, u2, . . . , up} in Rn is an orthonormal set if it is an orthogonal set
of unit vectors.

The simplest example of an orthonormal set is the standard basis
{e1, e2, . . . , en} for Rn.
When the vectors in an orthogonal set of nonzero vectors are normalised
to have unit length, the new vectors will still be orthogonal, and hence the
new set will be an orthonormal set.
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Recall that in the last example, when P was a matrix with orthogonal
columns, PT P was diagonal. When the columns of a matrix are vectors in
an orthonormal set, the situation is even nicer:
Suppose that {u1, u2, u3} is an orthonormal set in R3 and
U =

[
u1 u2 u3

]
. Then

UT U =




uT
1

uT
2

uT
3




[
u1 u2 u3

]
=




uT
1 u1 uT

1 u2 uT
1 u3

uT
2 u1 uT

2 u2 uT
2 u3

uT
3 u1 uT

3 u2 uT
3 u3


 .

Hence

UT U =



1 0 0
0 1 0
0 0 1


 .

Since U is a square matrix, the relation UT U = I implies that UT = U−1

and thus we also have UUT = I .
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In fact,

A square matrix U has orthonormal columns if and only if U is invertible
with U−1 = UT .

Definition
A square matrix U which is invertible and such that U−1 = UT is called
an orthogonal matrix.

It follows from the result above that an orthogonal matrix is a square
matrix whose columns form an orthonormal set (not just an orthogonal
set as the name might suggest).
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More generally, we have the following result:

Theorem (3)
An m × n matrix U has orthonormal columns if and only if UT U = I.

We also have the following theorem

Theorem (4)
Let U be an m × n matrix with orthonormal columns, and let x and y be
vectors in Rn. Then
(1) ‖Ux‖ = ‖x‖.
(2) (Ux)·(Uy) = x·y.
(3) (Ux)·(Uy) = 0 if and only if x·y = 0.

Properties (1) and (3) say that if U has orthonormal columns then the
linear transformation x→ Ux (from Rn to Rm) preserves lengths and
orthogonality.
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Examples
Example 5
The 4× 3 matrix

A =




1 1 2
2 −1 −1
1 1 0
0 3 −1




has orthogonal columns and AT A equals



1 2 1 0
1 −1 1 3
2 −1 0 −1







1 1 2
2 −1 −1
1 1 0
0 3 −1


 =



6 0 0
0 12 0
0 0 6


 .

Note that here the rows of A are NOT orthogonal. For example, if we take
the dot product of the first two rows we get

〈1, 1, 2〉 · 〈2,−1,−1〉 = 2− 1− 2 = −1 6= 0 .
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Now consider the new matrix where each column of A is normalised:

B =




1/
√
6 1/

√
12 2/

√
6

2/
√
6 −1/

√
12 −1/

√
6

1/
√
6 1/

√
12 0

0 3/
√
12 −1/

√
6


 .

Then

BT B =



1 0 0
0 1 0
0 0 1


 .
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Example 6
Determine a, b, c such that




a 1√
2 − 1√

2
b 1√

6
1√
6

c 1√
3

1√
3




is an orthogonal matrix.
The given 2nd and 3rd columns are orthonormal.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 20 / 21

So we need to satisfy:
(1) a2 + b2 + c2 = 1,
(2) a/

√
2 + b/

√
6 + c/

√
3 = 0 which is equivalent to
√
3a + b +

√
2c = 0

(3) −a/
√
2 + b/

√
6 + c/

√
3 = 0 which is equivalent to

−
√
3a + b +

√
2c = 0.

From (2) and (3) we get a = 0, b = −
√
2c.

Substituting in (1) we get 2c2 + c2 = 1 that is c2 = 1
3 which gives

c = ± 1√
3 . Thus possible 1st columns are ±




0
−
√

2√
3

1√
3


 (there are only two

possibilities).

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 21 / 21



Overview

Last time we introduced the notion of an orthonormal basis for a subspace.
We also saw that if a square matrix U has orthonormal columns, then U is
invertible and U−1 = UT . Such a matrix is called an orthogonal matrix.
At the beginning of the course we developed a formula for computing the
projection of one vector onto another in R2 or R3. Today we’ll generalise
this notion to higher dimensions.

From Lay, §6.3
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Review
Recall from Stewart that if u 6= 0 and y are vectors in Rn, then

projuy = y·u
u·uu is the orthogonal projection of y onto u.

(Lay uses the notation “ ŷ ” for this projection, where u is understood.)
How would you describe the vector projuy in words?
One possible answer:

y can be written as the sum of a vector parallel to u and a vector
orthogonal to u; projuy is the summand parallel to u.

Or alternatively,
y can be written as the sum of a vector in the line spanned by u
and a vector orthogonal to u; projuy is the summand in Span{u}.

We’d like to generalise this, replacing Span{u} by an arbitrary subspace:
Given y and a subspace W in Rn, we’d like to write y as a sum of a vector
in W and a vector in W⊥.
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Example 1
Suppose that {u1, u2, u3} is an orthogonal basis for R3 and let
W = Span {u1, u2}. Write y as the sum of a vector ŷ in W and a vector z
in W⊥.

EXAMPLE: Suppose u1,u2,u3 is an orthogonal basis for R
3

and let W =Spanu1,u2. Write y in R
3 as the sum of a vector


y

in W and a vector z in W.

u10

u2

y

y
ˆ

W

W¶

z

2
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Recall that for any orthogonal basis, we have

y = y·u1
u1·u1

u1 + y·u2
u2·u2

u2 + y·u3
u3·u3

u3.

It follows that
ŷ = y·u1

u1·u1
u1 + y·u2

u2·u2
u2

and
z = y·u3

u3·u3
u3.

Since u3 is orthogonal to u1 and u2, its scalar multiples are orthogonal to
Span{u1, u2}. Therefore z ∈W⊥

All this can be generalised to any vector y and subspace W of Rn, as we
will see next.
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The Orthogonal Decomposition Theorem
Theorem
Let W be a subspace in Rn. Then each y ∈ Rn can be written uniquely in
the form

y = ŷ + z (1)

where ŷ ∈W and z ∈W⊥.
If {u1, . . . , up} is any orthogonal basis of W , then

ŷ = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up (2)

The vector ŷ is called the orthogonal projection of y onto W .

Note that it follows from this theorem that to calculate the decomposition
y = ŷ + z, it is enough to know one orthogonal basis for W explicitly. Any
orthogonal basis will do, and all orthogonal bases will give the same
decomposition y = ŷ + z.
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Example 2
Given

u1 =




1
1
0
−1


 , u2 =




1
0
1
1


 , u3 =




0
−1
1
−1




let W be the subspace of R4 spanned by {u1, u2, u3}.

Write y =




2
−3
4
1


 as the sum of a vector in W and a vector orthogonal to

W .
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The orthogonal projection of y onto W is given by

ŷ = y·u1
u1·u1

u1 + y·u2
u2·u2

u2 + y·u3
u3·u3

u3

= −2
3




1
1
0
−1


+ 7

3




1
0
1
1


+ 6

3




0
−1
1
−1




= 1
3




5
−8
13
3




Also

z = y− ŷ =




2
−3
4
1


−

1
3




5
−8
13
3


 = 1

3




1
−1
−1
0



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Thus the desired decomposition of y is

y = ŷ + z


2
−3
4
1


 = 1

3




5
−8
13
3


+ 1

3




1
−1
−1
0


 .

The Orthogonal Decomposition Theorem ensures that z = y− ŷ is in W⊥.
However, verifying this is a good check against computational mistakes.
This problem was made easier by the fact that {u1, u2, u3} is an
orthogonal basis for W . If you were given an arbitrary basis for W instead
of an orthogonal basis, what would you do?
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Theorem (The Best Approximation Theorem)
Let W be a subspace of Rn, y any vector in Rn, and ŷ the orthogonal
projection of y onto W . Then ŷ is the closest vector in W to y, in the
sense that

‖y− ŷ‖ < ‖y− v‖ (3)

for all v in W , v 6= ŷ.

W
0

y

ŷ

||y - ŷ||

v||ŷ - v||

||y - v||
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Proof
Let v be any vector in W , v 6= ŷ. Then ŷ− v ∈W . By the Orthogonal
Decomposition Theorem, y− ŷ is orthogonal to W . In particular y− ŷ is
orthogonal to ŷ− v. Since

y− v = (y− ŷ) + (ŷ− v)

the Pythagorean Theorem gives

‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2.

Hence ‖y− v‖2 > ‖y− ŷ‖2.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 10 / 24

We can now define the distance from a vector y to a subspace W of Rn.

Definition
Let W be a subspace of Rn and let y be a vector in Rn. The distance
from y to W is

||y− ŷ||
where ŷ is the orthogonal projection of y onto W .
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Example 3
Consider the vectors

y =




3
−1
1
13


 , u1 =




1
−2
−1
2


 , u2 =




−4
1
0
3


 .

Find the closest vector to y in W = Span {u1, u2}.

ŷ = y·u1
u1·u1

u1 + y·u2
u2·u2

u2

= 30
10




1
−2
−1
2


+ 26

26




−4
1
0
3


 =




−1
−5
−3
9


 .

Therefore the distance from y to W is ||




3
−1
1
13


−




−1
−5
−3
9


 || = ||




4
4
4
4


 || = 8.
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Theorem
If {u1, u2, . . . , up} is an orthonormal basis for a subspace W of Rn, then
for all y in Rn we have

projW y = (y·u1)u1 + (y·u2)u2 + · · ·+ (y·up)up.

This theorem is an easy consequence of the usual projection formula:

ŷ = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up.

When each ui is a unit vector, the denominators are all equal to 1.

Theorem
If {u1, u2, . . . , up} is an orthonormal basis for W and
U =

[
u1 u2 . . . up

]
, then for all y in Rn we have

projW y = UUT y . (4)

The proof is a matrix calculation; see the posted slides for details.
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Note that if U is a n × p matrix with orthonormal columns, then we have
UT U = Ip (see Lay, Theorem 6 in Chapter 6). Thus we have

UT Ux = Ipx = x for every x in Rp

UUT y = projW y for every y in Rn, where W = Col U.

Note: Pay attention to the sizes of the matrices involved here. Since U is
n× p we have that UT is p × n. Thus UT U is a p × p matrix, while UUT

is an n × n matrix.
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The previous theorem shows that the function which sends x to its
orthogonal projection onto W is a linear transformation. The kernel of this
transformation is ...
...the set of all vectors orthogonal to W , i.e., W⊥.
The range is W itself.
The theorem also gives us a convenient way to find the closest vector to x
in W : find an orthonormal basis for W and let U be the matrix whose
columns are these basis vectors. Then mutitply x by UUT .
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Examples

Example 4

Let W = Span







2
1
2


 ,



−2
2
1








and let x =



4
8
1


. What is the closest

vector to x in W ?

Set u1 =



2/3
1/3
2/3


 , u2 =



−2/3
2/3
1/3


,

U =



2/3 −2/3
1/3 2/3
2/3 1/3


 .
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We check that UT U =
[
1 0
0 1

]
, so U has orthonormal columns.

The closest vector is

projW x = UUT x = 1
9



8 −2 2
−2 5 4
2 4 5






4
8
1


 =



2
4
5


 .

We can also compute distance from x to W :

‖x− projW x‖ = ‖



4
8
1


−



2
4
5


 ‖ = ‖



2
4
−4


 ‖ = 6.
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Because this example is about vectors in R3, so we could also use cross
products:



2
1
2


×



−2
2
1


 =

∣∣∣∣∣∣∣

i j k
2 1 2
−2 2 1

∣∣∣∣∣∣∣
= −3i− 6j + 6k = n

gives a vector orthogonal to W , so the distance is the length of the
projection of x onto n:



4
8
1


 ·



−1/3
−2/3
2/3


 = −6 ,

and the closest vector is


4
8
1


+ 6



−1/3
−2/3
2/3


 =



2
4
5


 .
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This example showed that the standard matrix for projection to

W = Span







2
1
2


 ,



−2
2
1








is 1
9



8 −2 2
−2 5 4
2 4 5


.

If we instead work with B =







2
1
2


 ,



−2
2
1


 ,



−1
−2
2








coordinates, what is

the orthogonal projection matrix?
Observe that the three basis vectors were chosen very carefully: b1 and b2
span W , and b3 is orthogonal to W . Thus each of the basis vectors is an
eigenvector for the linear transformation. (Why?)
The linear transformation is represented by a diagonal matrix when it’s

written in terms of an eigenbasis. Thus we get the matrix



1 0 0
0 1 0
0 0 0


.

What does this tell you about orthogonal projection matrices in general?
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Example 5



1
0
1
0


 ,




1
1
−1
−1


 are orthogonal and span a subspace W of R4. Find a vector

orthogonal to W .

Normalize the columns and set

U =




1/
√
2 1/2

0 1/2
1/
√
2 −1/2

0 −1/2


 .

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 20 / 24

Then the standard matrix for the orthogonal projection is has matrix

UUT = 1
4




3 1 1 −1
1 1 −1 −1
1 −1 3 1
−1 −1 1 1


 .

Thus, choosing a vector v =




3
2
0
1


 not in W , the closest vector to v in W is

given by

UUT




3
2
0
1


 = 1

2




5
2
1
−2


 .
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In particular, v− UUT v =




3
2
0
1


−

1
2




5
2
1
−2


 = 1

2




1
2
−1
4


 lies in W⊥.

Thus




1
0
1
0


 ,




1
1
−1
−1


 ,




1
2
−1
4


 are orthogonal in R4, and span a subspace W1 of

dimension 3.
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But now we can repeat the process with W1! This time take

U =




1/
√
2 1/2 1/

√
22

0 1/2 2/
√
22

1/
√
2 −1/2 −1/

√
22

0 −1/2 4/
√
22


 ,

UUT = 1
44




35 15 9 −3
15 19 −15 5
9 −15 35 3
−3 5 3 43


 .
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Taking x =




0
0
0
1


, (I4 − UUT )x = 1/44




3
−5
−3
1


 and then




1
0
1
0


 ,




1
1
−1
−1


 ,




1
2
−1
4


 ,




3
−5
−3
1


 is an orthogonal basis for R4.
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Overview

Last time we discussed orthogonal projection. We’ll review this today
before discussing the question of how to find an orthonormal basis for a
given subspace.

From Lay, §6.4
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Orthogonal projection
Given a subspace W of Rn, you can write any vector y ∈ Rn as

y = ŷ + z = projW y + projW ⊥y,

where ŷ ∈W is the closest vector in W to y and z ∈W⊥. We call ŷ the
orthogonal projection of y onto W .
Given an orthogonal basis {u1, . . . , up} for W , we have a formula to
compute ŷ:

ŷ = y·u1
u1·u1

u1 + · · ·+ y·up
up·up

up.

If we also had an orthogonal basis {up+1, . . . , un} for W⊥, we could find z
by projecting y onto W⊥:

z = y·up+1
up+1·up+1

up+1 + · · ·+ y·un
un·un

un.

However, once we subtract off the projection of y to W , we’re left with
z ∈W⊥. We’ll make heavy use of this observation today.
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Orthonormal bases

In the case where we have an orthonormal basis {u1, . . . , up} for W , the
computations are made even simpler:

ŷ = (y·u1)u1 + (y·u2)u2 + · · ·+ (y·up)up.

If U = {u1, . . . , up} is an orthonormal basis for W and U is the matrix
whose columns are the ui, then

UUT y = ŷ
UTU = Ip
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The Gram Schmidt Process

The aim of this section is to find an orthogonal basis {v1, . . . , vn} for a
subspace W when we start with a basis {x1, . . . , xn} that is not
orthogonal.
Start with v1 = x1.
Now consider x2. If v1 and x2 are not orthogonal, we’ll modify x2 so that
we get an orthogonal pair v1, v2 satisfying

Span{x1, x2} = Span{v1, v2}.

Then we modify x3 so get v3 satisfying v1 · v3 = v2 · v3 = 0 and

Span{x1, x2, x3} = Span{v1, v2, v3}.

We continue this process until we’ve built a new orthogonal basis for W .
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Example 1

Suppose that W = Span {x1, x2} where x1 =



1
1
0


 and x2 =



2
2
3


. Find an

orthogonal basis {v1, v2} for W .

To start the process we put v1 = x1.
We then find

ŷ = projv1x2 = x2·v1
v1·v1

v1 = 4
2



1
1
0


 =



2
2
0


 .
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Now we define v2 = x2 − ŷ; this is orthogonal to x1 = v1:

v2 = x2 −
x2 · v1
v1 · v1

v1 = x2 − ŷ =



2
2
3


−



2
2
0


 =



0
0
3


 .

So v2 is the component of x2 orthogonal to x1. Note that v2 is in
W = Span{x1, x2} because it is a linear combination of v1 = x1 and x2.
So we have that 




v1 =



1
1
0


 , v2 =



0
0
3








is an orthogonal basis for W .
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Example 2
Suppose that {x1, x2, x3} is a basis for a subspace W of R4. Describe an
orthogonal basis for W .

• As in the previous example, we put

v1 = x1 and v2 = x2 −
x2·v1
v1·v1

v1.

Then {v1, v2} is an orthogonal basis for W2 =Span {x1, x2} = Span {v1, v2}.

• Now projW2x3 = x3·v1
v1·v1

v1 + x3·v2
v2·v2

v2 and

v3 = x3 − projW2x3 = x3 −
x3·v1
v1·v1

v1 −
x3·v2
v2·v2

v2

is the component of x3 orthogonal to W2. Furthermore, v3 is in W
because it is a linear combination of vectors in W .
• Thus we obtain that {v1, v2, v3} is an orthogonal basis for W .
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Theorem (The Gram Schmidt Process)
Given a basis {x1, x2, . . . , xp} for a subspace W of Rn, define

v1 = x1
v2 = x2 −

x2·v1
v1·v1

v1

v3 = x3 −
x3·v1
v1·v1

v1 −
x3·v2
v2·v2

v2

...
vp = xp −

xp·v1
v1·v1

v1 − . . .− xp·vp−1
vp−1·vp−1

vp−1

Then {v1, . . . , vp} is an orthogonal basis for W . Also

Span {v1, . . . , vk} = Span {x1, . . . , xk} for 1 ≤ k ≤ p.
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Example 3
The vectors

x1 =



3
−4
5


 , x2 =



−3
14
−7




form a basis for a subspace W . Use the Gram-Schmidt process to produce
an orthogonal basis for W .

Step 1 Put v1 = x1.
Step 2

v2 = x2 −
x2·v1
v1·v1

v1

=



−3
14
−7


− (−100)

50



3
−4
5


 =



3
6
3


 .
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Then {v1, v2} is an orthogonal basis for W .

To construct an orthonormal basis for W we normalise the basis {v1, v2}:

u1 = 1
‖v1‖

v1 = 1√
50



3
−4
5




u2 = 1
‖v2‖

v2 = 1√
54



3
6
3


 = 1√

6



1
2
1




Then {u1, u2} is an orthonormal basis for W .
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Example 4

Let A =




−1 6 6
3 −8 3
1 −2 6
1 −4 3


. Use the Gram-Schmidt process to find an

orthogonal basis for the column space of A.

Let x1, x2, x3 be the three columns of A.

Step 1 Put v1 = x1 =




−1
3
1
1


.

Step 2

v2 = x2 −
x2·v1
v1·v1

v1 =




6
−8
−2
−4


−

(−36)
12




−1
3
1
1


 =




3
1
1
−1


 .
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Step 3

v3 = x3 −
x3·v1
v1·v1

v1 −
x3·v2
v2·v2

v2

=




6
3
6
3


−

12
12




−1
3
1
1


−

24
12




3
1
1
−1




=




1
−2
3
4


 .

Thus an orthogonal basis for the column space of A is given by







−1
3
1
1


 ,




3
1
1
−1


 ,




1
−2
3
4








.
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Example 5
The matrix A is given by

A =




1 0 0
1 1 0
0 1 1
0 0 1


 .

Use the Gram-Schmidt process to show that







1
1
0
0


 ,




−1
1
2
0


 ,




1
−1
1
3








is an orthogonal basis for Col A.

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 13 / 24

Let a1, a2, a3 be the three columns of A.

Step 1 Put v1 = a1 =




1
1
0
0


.

Step 2

v2 = a2 −
a2·v1
v1·v1

v1 =




0
1
1
0


−

1
2




1
1
0
0


 =




−1/2
1/2
1
0


 .

For convenience we take v2 =




−1
1
2
0


. (This is optional, but it makes v2

easier to work with in the following calculation.)
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Step 3

v3 = a3 −
a3·v1
v1·v1

v1 −
a3·v2
v2·v2

v2 =




0
0
1
1


− 0− 2

6




−1
1
2
0


 =




1/3
−1/3
1/3
1




For convenience we take v3 =




1
−1
1
3


.
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QR factorisation of matrices

If an m × n matrix A has linearly independent columns x1, . . . , xn, then
A = QR for matrices

Q is an m × n matrix whose columns are an orthonormal basis for
Col(A), and
R is an n × n upper triangular invertible matrix.

This factorisation is used in computer algorithms for various computations.

In fact, finding such a Q and R amounts to applying the Gram Schmidt
process to the columns of A.
(The proof that such a decomposition exists is given in the text.)
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Example 6
Let

A =




5 9
1 7
−3 −5
1 5


 , Q =




5/6 −1/6
1/6 5/6
−3/6 1/6
1/6 3/6




where the columns of Q are obtained by applying the Gram-Schmidt
process to the columns of A and then normalising the columns.
Find R such that A = QR.

As we have noted before, QTQ = I because the columns of Q are
orthonormal. If we believe such an R exists, we have

QTA = QT (QR) = (QTQ)R = IR = R.

Therefore R = QTA.
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In this case,

R = QTA

=
[
5/6 1/6 −3/6 1/6
−1/6 5/6 1/6 3/6

]



5 9
1 7
−3 −5
1 5




=
[
6 12
0 6

]

An easy check shows that

QR =




5/6 −1/6
1/6 5/6
−3/6 1/6
1/6 3/6




[
6 12
0 6

]
=




5 9
1 7
−3 −5
1 5


 = A.
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Example 7
In Example 4 we found that an orthogonal basis for the column space of
the matrix

A =




−1 6 6
3 −8 3
1 −2 6
1 −4 3




is given by 






−1
3
1
1


 ,




3
1
1
−1


 ,




1
−2
3
4







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Normalising the columns gives

Q =




−1/
√
12 3/

√
12 1/

√
30

3/
√
12 1/

√
12 −2/

√
30

1/
√
12 1/

√
12 3/

√
30

1/
√
12 −1/

√
12 4

√
30


 .

As in the last example

R = QTA

=




√
12
√
12

√
12

0
√
12 2

√
12

0 0
√
30


 .

It is left as an exercise to check that QR = A.
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Matrix decompositions

We’ve seen a variety of matrix decompositions this semester:
A = PDP−1

[
a −b
b a

]
= StRθ

A = QR
In each case, we go to some amount of computation work in order to
express the given matrix as a product of terms we understand well. The
advantages of this can be either conceptual or computational, depending
on the context.
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Example 8
An orthogonal basis for the column space of the matrix

A =




1 0 0
1 1 0
0 1 1
0 0 1


 .

is given by 






1
1
0
0


 ,




−1
1
2
0


 ,




1
−1
1
3








Find a QR decomposition of A.
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To construct Q we normalise the orthogonal vectors. These become the
columns of Q:

Q =




1/
√
2 −1/

√
6 1/

√
12

1/
√
2 1/

√
6 −1/

√
12

0 2/
√
6 1/

√
12

0 0 3/
√
12




Since R = QTA, we solve

R = QTA =



1/
√
2 1/

√
2 0 0

−1/
√
6 1/

√
6 2/

√
6 0

1/
√
12 −1/

√
12 1/

√
12 3/

√
12







1 0 0
1 1 0
0 1 1
0 0 1




=



2/
√
2 1/

√
2 0

0 3/
√
6 2/

√
6

0 0 4/
√
12



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Check:

QR =




1/
√
2 −1/

√
6 1/

√
12

1/
√
2 1/

√
6 −1/

√
12

0 2/
√
6 1/

√
12

0 0 3/
√
12






2/
√
2 1/

√
2 0

0 3/
√
6 2/

√
6

0 0 4/
√
12




=




1 0 0
1 1 0
0 1 1
0 0 1


 .

A/Prof Scott Morrison (ANU) MATH1014 Notes Second Semester 2016 24 / 24



Overview

Last time we introduced the Gram Schmidt process as an algorithm for
turning a basis for a subspace into an orthogonal basis for the same
subspace. Having an orthogonal basis (or even better, an orthonormal
basis!) is helpful for many problems associated to orthogonal projection.
Today we’ll discuss the “Least Squares Problem", which asks for the best
approximation of a solution to a system of linear equations in the case
when an exact solution doesn’t exist.

From Lay, §6.5
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1. Introduction

Problem: What do we do when the matrix equation Ax = b has no
solution x?
Such inconsistent systems Ax = b often arise in applications, sometimes
with large coefficient matrices.

Answer: Find x̂ such that Ax̂ is as close as possible to b.

In this situation Ax̂ is an approximation to b. The general least squares
problem is to find an x̂ that makes ‖b− Ax̂‖ as small as possible.
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Definition
For an m × n matrix A, a least squares solution to Ax = b is a vector x̂
such that

‖b− Ax̂‖ ≤ ‖b− Ax‖ for all x in Rn.

The name “least squares” comes from ‖ · ‖2 being the sum of the squares
of the coordinates.
It is now natural to ask ourselves two questions:
(1) Do least square solutions always exist?

The answer to this question is YES. We will see that we can use the
Orthogonal Decomposition Theorem and the Best Approximation
Theorem to show that least square solutions always exist.

(2) How can we find least square solutions?
The Orthogonal Decomposition Theorem —and in particular, the
uniqueness of the orthogonal decomposition— gives a method to find
all least squares solutions.
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Solution of the general least squares problem

Consider an m × n matrix A =
[
a1 a2 . . . an

]
.

If x =




x1
x2
...

xn



is a vector in Rn, then the definition of matrix-vector

multiplication implies that

Ax = x1a1 + x2a2 + · · ·+ xnan .

So, the vector Ax is the linear combination of the columns of A with
weights given by the entries of x.

For any vector x in Rn that we select, the vector Ax is in Col A. We
can solve Ax = b if and only if b is in Col A.
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If the system Ax = b is inconsistent it means that b is NOT in Col A.

So we seek x̂ that makes Ax̂ the closest point in Col A to b.

The Best Approximation Theorem tells us that the closest point in
Col A to b is b̂ = projCol Ab.

So we seek x̂ such that Ax̂ = b̂. In other words, the least squares
solutions of Ax = b are exactly the solutions of the system

Ax̂ = b̂ .

By construction, the system Ax̂ = b̂ is always consistent.
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We seek x̂ such that Ax̂ is the closest point to b in Col A.

Equivalently, we need to find x̂ with the property that Ax̂ is the orthogonal
projection of b onto Col(A).
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Since b̂ is the closest point to b in Col A, we need x̂ such that Ax̂ = b̂.
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The normal equationsBy the Orthogonal Decomposition Theorem, the projection b̂ is the
unique vector in Col A with the property that b− b̂ is orthogonal to
Col A.
Since for every x̂ in Rn the vector Ax̂ is automatically in Col A,
requiring that Ax̂ = b̂ is the same as requiring that b− Ax̂ is
orthogonal to Col A.
This is equivalent to requiring that b− Ax̂ is orthogonal to each
column of A. This means

aT
1 (b− Ax̂) = 0, aT

2 (b− Ax̂) = 0, · · · , aT
n (b− Ax̂) = 0.

This gives 


aT
1

aT
2
...

aT
n




(b− Ax̂) =




0
0
...
0




AT (b− Ax̂) = 0
AT b− AT Ax̂ = 0
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AT Ax̂ = AT b

These are the normal equations for x̂.

Theorem
The set of least-squares solutions of Ax = b coincides with the nonempty
set of solutions of the normal equations

AT Ax̂ = AT b.
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Since Ax̂ is automatically in Col A and b̂ is the unique vector in Col A
such that b− b̂ is orthogonal to Col A, requiring that Ax̂ = b̂ is the same
as requiring that b− Ax̂ is orthogonal to Col A.
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Examples

Example 1
Find a least squares solution to the inconsistent system Ax = b, where

A =



1 3
1 −1
1 1


 and b =



5
1
0


 .

To solve the normal equations AT Ax̂ = AT b, we first compute the
relevant matrices:

AT A =
[
1 1 1
3 −1 1

] 

1 3
1 −1
1 1


 =

[
3 3
3 11

]
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AT b =
[
1 1 1
3 −1 1

] 

5
1
0


 =

[
6
14

]
.

So we need to solve
[
3 3
3 11

]
x̂ =

[
6
14

]
. The augmented matrix is

[
3 3 6
3 11 14

]
→

[
1 1 2
3 11 14

]
→

[
1 1 2
0 8 8

]
→

[
1 1 2
0 1 1

]
→

[
1 0 1
0 1 1

]
.

This gives x̂ =
[
1
1

]
.

Note that Ax̂ =



1 3
1 −1
1 1




[
1
1

]
=



4
0
2


 and this is the closest point in Col A

to b =



5
1
0


.
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We could note in this example that AT A =
[
3 3
3 11

]
is invertible with

inverse 1
24

[
11 −3
−3 3

]
. In this case the normal equations give

AT Ax̂ = AT b⇐⇒ x̂ = (AT A)−1AT b.

So we can calculate

x̂ = (AT A)−1AT b

= 1
24

[
11 −3
−3 3

] [
6
14

]

=
[
1
1

]
.
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Example 2
Find a least squares solution to the inconsistent system Ax = b, where

A =



3 −1
1 −2
2 3


 and b =



4
3
2


 .

Notice that

AT A =
[
3 1 2
−1 −2 3

] 

3 −1
1 −2
2 3


 =

[
14 1
1 14

]
is invertible. Thus the

normal equations become

AT Ax̂ = AT b
x̂ = (AT A)−1AT b
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Furthermore,

AT b =
[
3 1 2
−1 −2 3

] 

4
3
2


 =

[
19
−4

]

So in this case

x̂ = (AT A)−1AT b

=
[
14 1
1 14

]−1 [
19
−4

]

= 1
195

[
14 −1
−1 14

] [
19
−4

]

= 1
13

[
18
−5

]
.
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With these values, we have

Ax̂ = 1
13



59
28
21


 ∼



5.54
2.15
1.62




which is as close as possible to



4
3
2


.
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Example 3

For A =




1 0 2
2 1 5
−1 1 −1
0 1 1


, what are the least squares solutions to

Ax = b =




1
−1
−1
2


?

AT A =



6 1 13
1 3 5
13 5 31


 , AT b =



0
0
0


 .
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For this example, solving AT Ax̂ = AT b is equivalent to finding the null
space of AT A 


6 1 13
1 3 5
13 5 31


 rref−−→



1 0 2
0 1 1
0 0 0




Here, x3 is free and x2 = −x3, x1 = −2x3.

So Nul AT A = R



2
1
−1


.

Here Ax̂ = 0 –not a very good approximation!
Remember that we are looking for the vectors that map to the closest
point to b in Col A.
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The question of a “best approximation” to a solution has been reduced to
solving the normal equations.

An immediate consequence is that there is going to be a unique least
squares solution if and only if AT A is invertible (note that AT A is always a
square matrix).

Theorem
The matrix AT A is invertible if and only if the columns of A are linearly
independent. In this case the equation Ax = b has only one least squares
solution x̂, and it is given by

x̂ = (AT A)−1AT b (1)

For the proof of this theorem see Lay 6.5 Exercises 19 - 21.
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Formula (1) for x̂ is useful mainly for theoretical calculations and for hand
calculations when AT A is a 2× 2 invertible matrix.

When a least squares solution x̂ is used to produce Ax̂ as an approximation
to b, the distance from b to Ax̂ is called the least squares error of this
approximation.
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Example 4

Given A =



3 −1
1 −2
2 3


, b =



4
3
2


 as in Example 2, we found

Ax̂ = 1
13



59
28
21


 ∼



5.54
2.15
1.62




Then the least squares error is given by ||b− Ax̂||, and since

b− Ax̂ =



4
3
2


−



5.54
2.15
1.62


 =



−1.54
0.85
0.38


 ,

we have
‖b− Ax̂‖ =

√
(−1.54)2 + .852 + .382 ≈

√
3.24.
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Alternative calculations

Note: we didn’t cover the QR decomposition in class; these slides
are just provided as a reference for your own interest.
In some cases the normal equations for a least squares problem can be ill
conditioned; that is, small errors in the calculations of the entries of AT A
can sometimes cause relatively large errors in the solution x̂. If the
columns of A are linearly independent, the least squares solution can be
computed more reliably through a QR factorisation of A.

Theorem
Given an m × n matrix A with linearly independent columns, let A = QR
be a QR factorisation of A. Then for each b ∈ Rm, the equation Ax = b
has a unique least squares solution, given by

x̂ = R−1QT b. (2)
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Proof: Let x̂ = R−1QT b. Then

Ax̂ = QR x̂ = QRR−1QT b = QQT b.

The columns of Q form an orthonormal basis for Col A. Hence QQT b is
the orthogonal projection of b̂ of b onto Col A.
Thus Ax̂ = b̂, which shows that x̂ is a least squares solution of Ax = b.
The uniqueness of x̂ follows from the previous theorem.

Note that x̂ = R−1QT b is equivalent to

R x̂ = QT b (3)

Because R is upper triangular it is faster to solve (3) by back-substitution
or row operations than to compute R−1 and use (2).
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3.1 Examples

Example 5
We are given

A =




1 −1
1 4
1 −1
1 4


 =




1/2 −1/2
1/2 1/2
1/2 −1/2
1/2 1/2




[
2 3
0 5

]
, and b =




−1
6
5
7




Using this QR factoristaion of A we want to find the least squares solution
of Ax = b.

We will use the equation R x̂ = QT b to solve this problem.
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We calculate

QT b =
[
1/2 1/2 1/2 1/2
−1/2 1/2 −1/2 1/2

]



−1
6
5
7




=
[
17/2
9/2

]

The least squares solution x̂ satisfies R x̂ = QT b; that is
[
2 3
0 5

] [
x1
x2

]
=

[
17/2
9/2

]
.
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This is easily solved to give

x̂ =
[
29/10
9/10

]
,

and

Ax̂ =




2
13/2
2

13/2


 .
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Example 6
We want to find the least squares solution for Ax = b where

A =



1 0 2
1 1 1
2 1 4


 , b =



1
1
0


 .

Gram-Schmidt on the columns of A yields

Q =



1/
√
6 −1/

√
2 −1/

√
3

1/
√
6 1/

√
2 −1/

√
3

2/
√
6 0 1/

√
3


 .

Now we know that R = QT A.
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Thus

R =




√
6
√
6/2 11/

√
6

0 1/
√
2 −1/

√
2

0 0 1/
√
3


 , QT b =




√
6/3
0

−2/
√
3


 .

So we need to solve



√
6
√
6/2 11/

√
6

0 1/
√
2 −1/

√
2

0 0 1/
√
3


 x̂ =




√
6/3
0

−2/
√
3




Thus x̂ =



5
−2
−2


 almost immediately. Then Ax̂ = b, an exact solution this

time.
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