Math 3325, 2016 — Assignment 4

Hand in by 5pm on November 4

This assignment is worth 100 marks: 80 for the questions below, and 20 for writing quality.

- (1) (i) (5 marks) Let A be a bounded self-adjoint operator. Show that $U = (A iI)(A + iI)^{-1}$ is unitary.
 - (ii) (5 marks) Let X be a bounded operator. Show that $\sigma(X^*) = {\overline{\lambda} | \lambda \in \sigma(X)}$ and that if X is invertible then $\sigma(X^{-1}) = {\lambda^{-1} | \lambda \in \sigma(X)}$.
 - (iii) (5 marks) Show that the only positive unitary operator is *I*.
- (2) Let *A* be a bounded self-adjoint operator.
 - (i) (5 marks) Show that $A \ge kI$ for $k \in \mathbb{R}$ if and only if $\sigma(A) \subset [k, \infty)$.
 - (ii) (5 marks) Show that if $A \ge I$, $A^n \ge I$ for every positive integer n.
- (3) Let S be a linear subspace of C([0,1]). Since C([0,1]) is a subset of $L^2([0,1])$ we can also regard it as a subspace of $L^2([0,1])$. We assume that S is closed as a subspace of $L^2([0,1])$, i.e., in the L^2 topology.
 - (i) (5 marks) Show that S is a closed subspace of C([0,1]) (under the sup norm).
 - (ii) (5 marks) Show that there exists M > 0 such that for all $f \in S$,

$$||f||_2 \le ||f||_\infty \le M||f||_2.$$

(Use the closed graph theorem.)

(iii) (5 marks) Fix $y \in [0, 1]$. Show that there exists a function $k_y \in L^2([0, 1])$, with $||k_y||_{L^2([0,1])} \leq M$, such that

$$f(y) = \int_0^1 k_y(x) f(x) \, dx$$

for all $f \in S$. (Use the Hilbert space Riesz representation theorem.)

- (iv) (5 marks) Show that the L^2 unit ball of S is compact, and hence that S finite dimensional. (Show that a sequence in the unit ball which converges weakly converges in norm.)
- (4) Let $p \in (1, \infty)$. Let l^p denote the Banach space of p-summable sequences of complex numbers, and let e_i denote the element of l^p with jth entry equal to 0 for $j \neq i$, and 1 for j = i.

(i) (5 marks) Show that a sequence (x_n) in l^p , where $x_n = (a_n^m)_{m=1}^{\infty}$, converges weakly to zero iff the norms $||x_n||$ are uniformly bounded, and a_n^m converges to 0 in \mathbb{C} for each fixed m as $n \to \infty$.

Define the set $F \subset l^p$ by

$$F = \{e_m + me_n \mid m < n, m, n \in \mathbb{N}\}.$$

- (ii) (5 marks) Show that *F* is closed in the strong topology.
- (iii) (5 marks) Show that 0 is in the closure of F in the weak topology.
- (iv) (5 marks) Show that there is no sequence contained in *F* that converges weakly to zero. (Use the result of part (a)). Remark: parts (c) and (d) shows that the weak topology is not metrizable, since for a metrizable topology, the closure of a set is precisely the set of limit points of convergent sequences from that set.
- (5) (i) (5 marks) Suppose that X is a Banach space, and that x_i is a sequence in X converging weakly to x. Show that

$$||x|| \leq \limsup_{i \to \infty} ||x_i||.$$

- (ii) (5 marks) Suppose that X and Y and Banach spaces, and that $T: X \to Y$ is a bounded linear transformation. Show that T is also continuous if both X and Y are given the weak topology.
- (iii) (5 marks) Let $\phi \in C_c^{\infty}([-1, 1])$ be a smooth, compactly supported function with integral 2. Consider the sequence of measures on [-1, 1]:

$$\mu_n = n\phi(nx)dx,$$

where dx is Lebesgue measure. These measures converge in the weak-* topology. What is the limit measure?

- (6) Optional (not for credit):
 - (i) Let (A_n) be a decreasing sequence of nonempty closed balls in a Banach space. Show that the intersection of the A_n is nonempty. (Do not assume that the radii converge to zero.)
 - (ii) Let (B_n) be a decreasing sequence of closed, bounded, nonempty convex sets in a reflexive Banach space Y. Show that the intersection of the B_n is nonempty. (Hint: first show that the sets B_n are weakly closed, using the Separating Hyperplane theorem. If you can't, assume it and complete the rest of the problem, using Banach-Alaoglu.)
 - (iii) Let $X = L^1(\mathbb{R})$. Find a decreasing sequence of closed, bounded, nonempty convex sets $C_n \subset X$ whose intersection is empty.