4 Review of ‘calculus’

e Let ¢ : R" — R be continuous. The support of ¢ is the closure of the set where ¢(x) # 0. If the
support of ¢ is compact then we say that ¢ is compactly supported.

© There exist functions ¢ : R" — R such that ¢(x) = 1 for |x| < 1, ¢ is C*, and ¢ is compactly
supported. The set of compactly supported, smooth functions on R" is denoted C°(R").

® [P norms. The L norm, p > 1, of a measurable function f on a measurable set E is defined
to be

Wil o= ( fE Fr dx)“ ’

It is a norm (homogeneous, nonnegative, obeys triangle inequality) provided we identify func-
tions which differ on a set of measure zero. The normed space of (equivalence classes of) func-
tions with finite L norm is denoted LP(E). A very important property is that L?(E) is complete;
we will prove this later in the course. We also define L (E) to be the set of essentially bounded
(equivalence classes of) functions, i.e. those for which

1l gy := sup {MI the set {x | |f(x)| > M}

has positive measure.}

is finite. This is also a complete normed space.
e If ¢ : R" - R is continuous and compactly supported, then it is in L for every 1 < p < co.
o Holder’s inequality: if p™ + ¢! =1,

1ff %) dx| < 1fllr o lgliace-

To prove Holder’s inequality, we begin with Jensen’s inequality (stating that secants of convex
functions stay above the function) for the function x + b*, obtaining
1 v
b<—+—.
P g
Next, we take advantage of the fact that this inequality holds for all b, but the different terms
scale differently in b. (You should read Terry Tao’s blog post *Amplification, arbitrage, and the
tensor product trick’!) In particular, replacing b with a' b and rearranging we obtain Young’s
inequality
a bl
ab < —+—.
P g

The first part is Tonelli’s, the second part Fubini’s.

Often we use these in conjunction. Suppose we are asked to integrate some function f on
R, but don’t even know it is integrable. We first apply Tonelli’s theorem to |f|, justifying the
use of multiple integrals. Maybe we can calculate them, or if not, at least estimate them. Thus
we can establish that f is integrable. Finally we apply Fubini’s theorem to justify using multiple
integrals in the actual calculation.

o Polar coordinates:

Let f be an real-valued integrable function on R". Define the (n — 1)-sphere by
S = (x e R" | x| = 1}.

Let f(r, o) = f(rw), so f iRy x $"1 — R. Also, for a measurable subset E of R", and r > 0,
define E, ¢ $""! by
E ={weS" ' |roeE}.

ﬁf(x)dx:ﬁm(ﬁyf(r,w)dw)r”’ldr.

© Using polar coordinates we see the following: Let B be the unit ball in R”. The function
|x|~* is in L'(B) iff « < nand it is in L'(R" \ B) iff @ > n.

o Absolutely continuous functions and the fundamental theorem of calculus.

Then

Definition 4.2. A function f : [a,b] — R is absolutely continuous if for any € > 0 there exists a

& > 0 so that
N

N
Z |f(bk) = f(ax)l < € whenever Z(bk —ag) <68

k=1 k=1
and the intervals (a, by) are disjoint.

Theorem 4.3 (SS Chapter 3, Theorem 3.8). An absolutely continuous function is differentiable al-

most everywhere. Moreover, if its derivative is zero almost everywhere, the function is constant.

Theorem 4.4 (SS Chapter 3, Theorem 3.11). The derivative of an absolutely continuous function F
is integrable, and

Fx) - Fla) = [ " Fy)dy.

Conversely, if f is integrable on [a, b], then F(x) = f f(y)dy is absolutely continuous and F'(x) =

f(x) almost everywhere.

From this, Holder’s inequality follows easily — first prove it for functions with ||pr = land
lgl, = 1.

e Dominated convergence theorem. (SS Chapter 2 Theorem 1.13).

Let f, be a sequence of functions in L'(E) converging pointwise a.e. to f. Suppose that
|£2(x)] < g(x) for a fixed L' function g. Then

Ja= L

Sketch: Consider the sets Exy on which |x| < N and |g(x)| < N. Eventually, every point is in

some E,, and so by the monotone convergence theorem fE‘ g becomes arbitrarily small. Estimate
N

fE | fu = f as the sum of the integral on one of these sets and the integral on the complement; use

the bounded convergence theorem on the first integral and | f, — f| < 2g on the second. o

The bounded convergence theorem is now a special case of the dominated convergence theo-
rem, but of course one needs to prove it first!

The bounded convergence theorem follows easily from Egorov’s theorem (SS Chapter 1 Theo-
rem 4.4) which says that any pointwise limit of functions actually converges uniformly, off some

arbitrarily small open set.
Sketch: [Egorov] Define
Ep = {x € E|Ifi(x) - f(x)] < 1/nforall j > k}.

Choose ky, large enough that m(E - E} ) < 27", Let A be the intersection of some tail of the sets
(E" }, choosing the tail so that A has almost full measure. Finally let A be a closed subset of A
omlt'tmg only an small set. u]

© Fubini-Tonelli theorem (in R"):

Theorem 4.1.
(i) Suppose that f : R™™ — C is nonnegative and measurable. Then

Lo r= L rora)ax @
:j_;m (Lnf(X,y)dx)dy,

Note: this is an equality in extended real numbers: the left hand side might be +co, but this
happens if and only if the right hand side is also +co.
(ii) Suppose that f € L'(R"™™). Then (4.1) holds.
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o Differentiating under the integral sign:
Proposition 4.5. Suppose that U is an open set in R", E is a measurable set inR¥, f : U X E — R
is a function so that

(i) f(x,-) : E > R is measurable for eachx € U,

(ii) By, f (x, y) exists and is continuous for all (x,y) and

(iii) (the crucial condition)

165, f (<. y)| < g(y) for some g € L' (E).

of
o fny dyff*( »y) dy.
Proof: (sketch) The LHS is, for a fixed x,

. f x+ he,, flx y)
lim
=

Use (ii) and the mean value theorem to write the integrand as dy, f (x + 0(h)e;, y) for some 0 <
0(h) < h and conclude that it is pointwise bounded by g(y). Then by the dominated convergence
theorem, we can take the pointwise limit inside the integral. This is just dy, f (x, y) using (ii) again,
which gives us the RHS. o

o Change of variable formula:

Theorem 4.6. Let R C R" be a rectangle, and F : R — R" a C' function. Then for every continuous
function f defined on F(R), we have the change of variable formula

[ sway= [ (o P@wdetDreoias. (2)
F(R) R

We sometimes write this differently: we think of F as relating two different sets of coordinates,
the y coordinates on F(R) and the x coordinates on R. We sometimes write y = y(x) instead of

y = F(x). Also, the Jacobian matrix DF is sometimes written dy/dx. So we have

fF(R)f(y)dy:j;f |det |dx

o Surface measure. Let S be a hypersurface given by the graph of a C! function:
S= {(xl,-u.x,.) | xp = u(XLXz,m,xn-l)}.
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ue CHRMY),
Then, in terms of the coordinates (x1,...,x,-1) on S, surface measure on S is defined to be

do =1+ |Vu(x)2dx', x' = (x1,....%-1). (4.3)

Proposition 4.7. The measure do on S is invariant under a Euclidean change of coordinates. That
is, suppose that (y1,...,y,) are another set of Euclidean coordinates. This means that there is an
orthonormal basis €] such that (y1, . .., yn) represents the point 3; yie]. If S can also be written as a

graph in the y coordinates,

S={@1s9a) | 9o = 0y Y20 oY1)} v EC

do =1+ |Vo(y)I2dy, v = (y1,.-..yn-1)-

The key to proving this proposition is showing that, if the y’ coordinates on S are given in

A1+ 1Vu(x))1?

then we have

terms of x’ by ¢ = F(x’), then

det DF(xo) = .Yy = F(xp). (4.4)
1+ 1Vo(yg)?
We then use Theorem 4.6.
The identity (4.4) can be proved by considering two Euclidean sets of coordinatesy = (y1, ..., y»)

and x = (xj,...,x,;). Changeto g = (yi.....yp-1.Yy) and X = (x1,...,%,-1,X,) where
Y, = yn — ('), Xy = x» — u(x’). Then show that, on the surface,

a2 (2

dx’ 0X,

This can be computed explicitly, to be equal to

V14 [Vu(x)?

1+ Vo(y)P

o The result above allows us to define surface measure for any C! hypersurface, not just a
graph.
o Integration by parts: the following result will be adequate for now; it is possible to weaken

the assumptions.

Proposition 4.8.
(i) Let Q C R” be a bounded domain with C' boundary. Then if f,g € C'(Q), we have

dg  df f
29 g2l ) ax = i d
St vagt) ax= [ samae

where n; = n - e; is the ith component of the outward pointing normal vector n and o is surface
measure on 05).
(ii) Assume that f, g are C' functions on R, such that f, dy,f € LP(R"), while g, dy,g € LI(R"),

withp™ + ¢ = 1. Then P of
fee=-,
—dx =— —— dx.
Rn f(’)x, Rn 9 X

Notice that dx’ = (n - e,)do in the notation of (4.3), where n is the upward pointing unit

normal to S.



