
5 Fourier Transform

The Fourier transform on Rn takes (sufficiently nice) functions on Rn and maps them to functions
on Rn. It is defined by

F f (ξ ) ≡ f̂ (ξ ) =

∫
Rn

e−ix ·ξ f (x)dx . (5.1)

Here, ‘sufficiently nice’ means that the integral converges, i.e. f decays sufficiently fast at infinity.
Shortly we shall define a class of rapidly decreasing functions on which all our calculations are
valid.

The Fourier transform
f̂ (ξ ) =

∫
Rn

e−ix ·ξ f (x)dx .

can be thought of as a continuum limit of Fourier series on an interval [−L,L] as L → ∞. The
Fourier coefficients here would be defined by (restricting to one dimension for simplicity)

fn =

∫ L

−L
e−inπx/L f (x)dx . (5.2)

Now let f̂L(ξ ) be a function taking the value fn at ξ = nπ/L, i.e. only defined on a lattice of points
distance π/L apart.

In the limit L → ∞, at least heuristically f̂L becomes a function f̂ of a continuous variable ξ
and (5.2) tends to the expression (5.1).

For the Fourier series we have Bessel’s identity

1

2L

∑
n

| fn |2 =
∫ L

−L
| f (x)|2 dx

and there is a reconstruction formula for f ∈ L2([−L,L])

f (x) =
1

2L

∑
n

fne
inπx/L

where the sum converges in L2 since (fn) ∈ l2(Z) is a square-summable sequence.
Bessel’s identity has a continuum limit, since

1

2L

∑
n

| fn |2 =
1

2π

π

L

∑
n

| f̂L(
nπ

L
)|2

“→” 1

2π

∫ ∞

−∞
| f̂ (ξ )|2 dξ .
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Also the reconstruction formula has a continuum limit:

1

2L

∑
n

fne
inπx/L =

1

2π

π

L

∑
n

eixnπ/L f̂L(
nπ

L
)

“→” 1

2π

∫ ∞

−∞
eiξx f̂ (ξ )dξ .

Therefore we can conjecture the following formulae:∫ ∞

−∞
| f (x)|2 dx =

1

2π

∫ ∞

−∞
| f̂ (ξ )|2 dξ (5.3)

and
f (x) =

1

2π

∫ ∞

−∞
eiξx f̂ (ξ )dξ . (5.4)

We shall prove these formulae for the Fourier transform shortly.
The basic property of the Fourier Transform which makes it useful for analyzing constant

coefficient PDE is that it transforms derivative operators (in x ) into polynomials (in ξ ). Let Dj

stand for the operator −i∂/∂xj . Then integrating by parts in the integral (5.1) shows that

F (Dj f ) = ξjF f .

Also, the ‘opposite’ is true (with a change of sign). Consider the Fourier transform of the function
xj f . By writing xje−ix ·ξ = i∂/∂ξje

−ix ·ξ , we see that

F (xj f ) = −Dj(F f ).

More generally, let α = (α1, . . . ,αn), αi nonnegative integers, be a multi-index and let Dα

denote Dα1
x1 . . .D

αn
xn and ξα denote ξα11 . . . ξ

αn
n . Then we have (assuming that f is small enough at

infinity so that the integrals are all convergent, and hence integrations by partsmay be performed)

F (Dα f ) = ξαF f , (5.5)
F (xα f ) = (−1)|α |DαF f .

5.1 Schwartz functions

What is a class of functions on which the Fourier transform acts nicely?
If we want the integral to be convergent, then we should ask that f is in L1(Rn). However, it

is very difficult to characterize the range of F on L1(Rn), so we shall deal with a much nicer (i.e.
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more restrictive) class of functions, namely Schwartz functions or functions of rapid decrease. Let
S(Rn) denote the class of Schwartz functions on Rn.

By definition, a Schwartz function on Rn is one such that for any two multi-indices α , β ,

∥ f ∥α ,β def
= sup

x∈Rn
|xβDα f (x)| < ∞.

Then f decreases rapidly at infinity in the sense that it is smaller than the reciprocal of any
polynomial, and this is true not just for f but all its derivatives as well. Then

| f (x)| ≤ C(1 + |x |2)−n =⇒ f ∈ L1(Rn),

and this is also true for all derivatives of f . So the Fourier Transform is well-defined on Schwartz
functions and (5.5) holds for all Schwartz f .

Exercise. Show that, if φ ∈ S(Rn), then xαφ and Dβφ are also in S(Rn).
Exercise. Show that, if φ ∈ S(Rn) and f is aC∞ function on Rn with all derivatives bounded,

then f φ ∈ S(Rn).

5.2 Three major theorems about F .

Now we come to one of the main properties of the Fourier transform — the inversion formula.
Let us define the map G, which is almost the same as F but with two slight changes:

G f (x) = 1

(2π)n

∫
Rn

eix ·ξ f (ξ )dξ . (5.6)

The differences are the factor of (2π)−n and the change of sign in the phase of the exponential.

Theorem 5.1. F maps S(Rn) to S(Rn).

Theorem 5.2. The map G on S(Rn) is a two-sided inverse to F .

Theorem 5.3. The Fourier transform preserves the L2 norm of Schwartz functions in Rn (up to a
factor (2π)n/2):

∥F f ∥L2 = (2π)n/2∥ f ∥L2, f ∈ S(Rn).

Proof of Theorem 5.1 (F preserves the Schwartz functions): Let φ be a Schwartz function. Then
we need to show that F φ ∈ S(Rn), which amounts to showing that F φ is smooth, and

ξαD
β
ξ
φ̂(ξ ) ∈ L∞(Rn)
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for all multi-indices α , β . To check smoothness, we just verify that we are allowed to differentiate
under the integral.

Because F exchanges multiplication by polynomials and partial differentiation, the second
condition is equivalent to

F
(
Dαxβφ

)
∈ L∞(Rn).

According to the exercise above, д = Dαxβφ is in S(Rn). Certainly then д ∈ L1. Finally we see�����
∫
Rn

e−ix ·ξд(x)dx
����� ≤

∫
Rn
|e−ix ·ξд(x)|dx

=

∫
Rn
|д(x)|dx < ∞

and so | |F (д)| |∞, which is just the supremum over ξ of this bounded quantity, is finite. □

Sketch of Theorem 5.2 (G is the inverse of F ):

• Step 1: compute the Fourier transform of the Schwartz function e−ax
2/2 (in one dimension).

• Step 2: compute the Fourier transforms of Gaussians of several variables.
• Step 3: to treat the general case, take a Schwartz function φ(x), x ∈ Rn. The composition

G ◦ F φ is given by the integral

(2π)−n
∫
Rn

eix ·ξ
(∫
Rn

e−iy·ξφ(y)dy

)
dξ .

This cannot be regarded as an integral over R2n because the integrand is not convergent there;
there is no decay in the ξ directions at all, only in the y direction, due to rapid decrease of the
function φ. To remedy this we introduce artificially a function decaying as |ξ | → ∞:

lim
ϵ→0

(2π)−n
∫
Rn

eix ·ξ
(
e−ϵ |ξ |

2/2

∫
Rn

e−iy·ξφ(y)dy

)
dξ .

The limit as ϵ → 0 gives the original integral we want. □

Proof:
•We first compute the Fourier transform of the Schwartz function e−ax2/2 (in one dimension).

This function satisfies the differential equation

∂u

∂x
= −axu .
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Since, by (5.5), F (Dj f ) = ξjF f and F (xj f ) = −DjF f , and remembering Dj = −i∂j , the Fourier
transform of e−ax2/2 satisfies the differential equation

iξû = −a
(
i
∂û

∂ξ

)
=⇒ ∂û

∂ξ
= −ξû

a
.

This implies that û is a multiple of e−ξ2/2a . To see which multiple, we compute

û(0) =

∫ ∞

−∞
e−ax

2/2 dx =

√
2π

a
.

(Here we use the standard result
∫ ∞
−∞ e

−x2/2dx =
√
2π .) Hence

F (e−ax
2/2) =

√
2π

a
e−ξ

2/2a .

Thus the more peaked the original Gaussian u is, the more spread out the Fourier transform is,
and vice versa.
•We can compute the Fourier transforms of Gaussians of several variables in the same way

(one variable at a time), and we get in Rn

F (e−a |x |
2/2) =

(2π
a

)n/2
e−|ξ |

2/2a . (5.7)

• Now to treat the general case, take a Schwartz function φ. The composition G ◦F φ is given
by the integral

(2π)−n
∫
Rn

eix ·ξ
(∫
Rn

e−iy·ξφ(y)dy

)
dξ .

This cannot be regarded as an integral over R2n because the integrand is not convergent there;
there is no decay in the ξ directions at all, only in the y direction, due to rapid decrease of the
function φ. To remedy this we introduce artificially a function decaying as |ξ | → ∞:

lim
ϵ→0

(2π)−n
∫
Rn

eix ·ξ
(
e−ϵ |ξ |

2/2

∫
Rn

e−iy·ξφ(y)dy

)
dξ .

The limit as ϵ → 0 gives the original integral we want. (Why? To see this, note that φ̂ ∈ S(Rn),
hence certainly in L1. Then, since e−ϵ |ξ |2/2 ≤ 1 everywhere, and converges pointwise to 1, we
have

lim
ϵ→0

∫
Rn

eix ·ξe−ϵ |ξ |
2/2φ̂(ξ )dξ =

∫
Rn

eix ·ξ φ̂(ξ )dξ

by the dominated convergence theorem.)
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Now, for each ϵ > 0, the integrand is an L1 function in R2n. (One nice way to see this is that
the ’external’ product f (x)д(y) of Schwartz functions on Rn is always Schwartz on R2n.) This
entitles us to apply Fubini’s theorem and switch the order of integration; i.e. we can do the ξ
integral first. This produces for us the Fourier transform of the Gaussian, which fortunately we
just computed:

lim
ϵ→0

(2π)−n
(2π
ϵ

)n/2 ∫
Rn

e−|x−y |
2/2ϵφ(y)dy.

We change variable to z = (x − y)/
√
ϵ :

= (2π)−n/2 lim
ϵ→0

∫
Rn

e−|z |
2/2φ(x +

√
ϵz)dz.

The integrand is uniformly bounded by e−|z |
2/2∥φ∥∞ as ϵ goes to zero. This is an L1 function, so

by the dominated convergence theorem, we can take the pointwise limit in the integrand:

= φ(x)(2π)−n/2
∫
Rn

e−|z |
2/2 dz = φ(x).

Thus, we have shown that
(GF φ)(x) = φ(x),

which proves that G ◦ F is the identity on S(Rn). An essentially identical argument proves that
F ◦ G is the identity on S(Rn), so this proves that F is a bijection (one-to-one and onto) on
S(Rn) with inverse G. □

Proof of Theorem 5.3: If we write out the square of the L2 norm of f̂ longhand we get∫ (∫
e−iy·ξ f (y)dy

) (∫
eix ·ξ f (x)dx

)
dξ .

Similar to before, this integrand is not L1 on R3n because we have no decay at infinity in the ξ
variable. So we introduce a decaying Gaussian factor as before and take a limit:

lim
ϵ→0

∫
e−ϵ |ξ |

2/2

(∫
e−iy·ξ f (y)dy

) (∫
eix ·ξ f (x)dx

)
dξ .

Now the integrand is L1 on R3n and we may invoke Fubini’s theorem and do the ξ integral first.
We get

lim
ϵ→0

(2π
ϵ

)n/2"
e−|x−y |

2/2ϵ f (y)f (x)dx dy.

Using similar reasoning as above, the limit is equal to

(2π)n
∫
| f (x)|2 dx . □
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5.3 Convolutions

The convolution of two functions f ,д, say in S(Rn), is the function f ∗ д given by

f ∗ д(x) =
∫
Rn

f (x − y)д(y)dy.

Notice that f ∗ д = д ∗ f , since∫
Rn

f (x − y)д(y)dy =

∫
Rn

f (z)д(x − z)dz.

This turns up frequently in analysis. There are two main ways in which they show up. One is
from translation invariance. Suppose we have an operator K on functions defined on Rn, which
is translation invariant: Ta(K f ) = K(Ta f ), where Ta is translation by a, i.e. Taд(x) = д(x − a).
Also suppose that K has an integral representation:

(K f )(x) =

∫
K(x ,y)f (y)dy.

Then K(x ,y) is a function of x − y and the integral above is then a convolution.
The other way convolution turns up is in smoothing and approximation. Suppose that we

have a function f (x), x ∈ Rn which is not very smooth — say we only have f ∈ L1, but with no
differentiability. We might want to find a smoothed version of f , i.e. a function д such that д is
close to f in L1 (i.e. ∥ f − д∥1 is small), but such that д is smooth (i.e. C∞). One way to do this
is to average f against a smooth function. Let φ be a smooth, nonnegative, compactly supported
function on Rn with integral 1. Then

f ∗ φ(x) =
∫

f (x − y)φ(y)dy

is a averaged version of f , which is smooth since we can write, with z = x − y,

(f ∗ φ)(x) =
∫

f (z)φ(x − z)dz (5.8)

and then we may differentiate under the integral sign arbitrarily many times. We can scale φ as
follows:

φϵ(x) = ϵ−nφ(x/ϵ). (5.9)

This preserves all conditions on φ, making it narrower and steeper. Then it turns out that

f ∗ φϵ → f in L1(Rn). (5.10)
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You should think here that (f ∗φϵ)(x) is an average of some of the values of f near x ; as ϵ → 0, we
are only averaging over a very small region, so (f ∗φϵ)(x) should approach f (x). The impressive
thing about this claim is that it also converges in the L1 sense.

Unfortunately there is no function which is an identity element under convolution, i.e. no
function д such that f ∗ д = f for all f .

We can think of (φϵ) as forming an ‘approximate identity’, which is often almost as good.
(Another way to remedy this lack of identity element is to pass to distributions.)

Theorem 5.4. Let f ,д ∈ S(Rn). Then the Fourier transform of f ∗д is the pointwise product of f̂ д̂,
and the Fourier transform of f д is (2π)−n f̂ ∗ д̂.

This is a straightforward calculation: Write the Fourier transform of the convolution∫
e−ix ·ξ

(∫
Rn

f (x − y)д(y)dy
)
dx .

Now write e−ix ·ξ = e−i(x−y)·ξe−iy·ξ and change variables from y to z = x − y.
To prove the second result apply G to (2π)−n f̂ ∗ д̂.

5.4 Density results

Our next goal is to show that the Fourier transformmakes sense on L2(Rn) and satisfiesTheorems
5.1, 5.2 and 5.3 with S(Rn) replaced by L2(Rn).

This is not as difficult as it may seem in view of the following:

Theorem 5.5 (Bounded Linear Transformation Thm). Suppose that S ⊂ H1 is a dense subspace
and T : S → H2 is a bounded linear transformation:

∥T f ∥H2 ≤ M ∥ f ∥H1, f ∈ S .

Then T extends uniquely to a bounded linear transformation from H1 to H2.

•This is a special case of a theorem about metric spaces: we can replace H1 by any metric
space and H2 by any complete metric space, S any dense subset of H1, and the condition by

d(Tx1,Tx2) ≤ Md(x1,x2).

•The idea is to defineT for a general f ∈ H1 by taking a sequence of elements of S converging
to f and observing that their images under T converge in H2.
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Sketch of the BLT theorem: To defineT f for an arbitrary f ∈ H1, we will choose some sequence
{дn} ⊂ S with дn → f . Now Tдn −Tдm ≤ M дn − дm, so the sequence {Tдn} is Cauchy and
hence converges to some д ∈ H2. We want to define T f = д.

Still todo:

• Show that this makes sense, i.e. that our definition ofT f didn’t depend on which sequence
{дn} we choose.

• Show that this extension is linear.

• Show that this extension is bounded.

• Show that any other extension is the same as this one. □

The BLT theorem and Theorem 5.3 implies that the Fourier transform extends from S(Rn) to
its closure in L2(Rn). Next we show that this closure is all of L2.

Theorem 5.6. Let 1 ≤ q < ∞. Then S(Rn) is dense in Lq(Rn).

Proof: First we prove this for q = 1. We use the fact, proved in MATH 3320 (and in SS, Chapter
2 Theorem 2.4) that continuous functions of compact support are dense in L1(Rn).

So, let f ∈ L1(Rn) and ϵ > 0 be given. We need to show that there is a Schwartz function д
such that ∥ f −д∥1 < ϵ . First select a continuous h of compact support, with L1 distance less than
ϵ/2 from f . It suffices to find a Schwartz function д such that ∥h − д∥1 ≤ ϵ/2.

We use a convolution to smooth h. Select a nonnegative C∞(Rn) function φ with support in
the unit ball B, and such that

∫
φ = 1.

Now define
φδ (x) = δ−nφ(x/δ).

Then φδ (x) is in C∞(Rn), supported in the ball of radius δ , non-negative,n and also has integral
1. Now consider

hδ = h ∗ φδ , i.e. hδ (x) =
∫

h(x − y)φδ (y)dy.

This is C∞ since φδ is C∞. It is compactly supported since the support of hδ is contained in
the set of points of distance not more than δ from the support of h. To make things concrete, let
A be the set of points of distance not more than 1 from the support of h. Then A is compact and
has a finite measure |A|. If we take δ < 1 then hδ is supported in the set A.
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Now h is uniformly continuous onA, so we can find δ so that |h(x)−h(y)| < ϵ/2|A| whenever
|x − y | < 2δ . Then we can estimate

|h(x) − hδ (x)| ≤
∫
B(0,δ)

����h(x) − h(x − z)����φδ (z)dz.
Since |x − (x − z)| = |z | < 2δ when z is in B(0,δ), we can estimate this by

|h(x) − hδ (x)| ≤
∫
B(0,δ)

ϵ

2|A|φδ (z)dz =
ϵ

2|A| .

Integrating this over A we find that

∥h − hδ ∥L1 ≤
ϵ

2
,

as required.
For q > 1, we proceed as follows. Given f ∈ Lq(Rn), we can find a bounded function of

compact support f̃ such that ∥ f − f̃ ∥q < ϵ/2. (We know simple functions are dense in Lq ; in fact
compactly supported simple functions are also dense, since given any measurable setA there is a
compact K ⊂ A so µ(A \ K) is arbitrarily small. This ensures that bounded functions of compact
support are dense too. Alternatively, define En =

{ |x | ≤ N , | f (x)| ≤ N
} and use the dominated

convergence theorem to show that f χEN converges in the Lq sense to f .)
Now suppose that | f̃ | ≤ M and that f̃ is supported in B(0,R). Then f̃ ∈ L1(Rn). Choose д,

constructed as above via convolution with a smooth function, so that it approximates f̃ in L1 to
within ϵ̃ . We have also |д | ≤ M . We estimate

∥ f̃ − д∥qLq ≤ ∥ f̃ − д∥
q−1
∞ ∥ f̃ − д∥1.

This implies that
∥ f̃ − д∥Lq ≤ (2M)(q−1)/qϵ̃1/q

and to complete the proof we simply choose ϵ̃ so the right hand side is smaller than ϵ/2. □

Exercise. Using ideas from this proof, prove the closely related result (5.10).

We have now proved that the Fourier transform F is, up to a numerical factor, an isometry on
L2(Rn), with inverse G.
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5.5 Parseval’s formula

Proposition 5.7. If f ,д ∈ L2(Rn), then∫
f (x)д(x)dx = (2π)−n

∫
f̂ (ξ )д̂(ξ )dξ .

This follows immediately from the fact the Fourier transform preserves norms up to a scalar
factor, and the polarization identity

2⟨f ,д⟩ = f + д2 + i f + iд2 − (1 + i) f 2 − (1 + i) д2 .
To remember the polarization identity, just expand out f + д2, and then f + iд2 (to get a

different coefficient in front of ⟨д, f ⟩, then take the appropriate linear combination to cancel out
the ⟨д, f ⟩ terms.

We could also prove it directly by proving it for Schwartz functions f ,д and then use the
density of Schwartz space in L2 to get the general case.

If f ,д ∈ S(Rn), then we compute∫
f (x)д(x)dx =

∫ (
(2π)−n

∫
f̂ (ξ )eix ·ξ dξ

)
д(x)dx

= (2π)−n
"

f̂ (ξ )eix ·ξд(x)dx dξ

= (2π)−n
∫

f̂ (ξ )д̂(ξ )dξ .

•This result also holds if, say, f ∈ S(Rn) and д ∈ L1(Rn).

5.6 Central limit theorem

The central limit theorem is about the limiting behaviour of the repeated convolution of a prob-
ability measure with itself. To simplify things we will consider just nonnegative L1 functions on
R, with integral 1 (particular examples of probability measures).

First we motivate the construction. Let X and Y be real-valued random variables with proba-
bility density functions f and д, respectively. This means that, for all t ∈ R,

P(X < t) =

∫ t

−∞
f (s)ds,
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and similarly for (Y ,д). What is the probability density function h for X + Y? Let’s assume X
and Y are independent. Heuristically,

P(X + Y < t)

= lim
n→∞

1

n

∑
k∈Z

nP (X ∈ [k/n, (k+1)/n]) P(Y < t − k/n)

→
∫ ∞

−∞
f (s)P(Y < t − s)ds .

Slightly more carefully, but still at a heuristic level, we have

P(X + Y < t) ≥
∑
k

P

(
X ∈

[
k

n
,
k+1

n

])
P

(
Y < t − k+1

n

)
and

P(X + Y < t) ≤
∑
k

P

(
X ∈

[
k

n
,
k+1

n

])
P

(
Y < t − k

n

)

and then as n → ∞ we expect both of these to converge to the given integral.
Now differentiate with respect to t and we get

h(t) =

∫ ∞

−∞
f (s)д(t − s)ds,

or equivalently, h = f ∗ д.
In scientific experiments one often runs an experiment many times and averages the results

to obtain greater accuracy. Mathematically, we can ask what is the pdf of (X1 + · · · + Xn)/n in
terms of the pdf f , ifXi are all independent with pdf f . Clearly the pdf ofX1+ . . .Xn is the n-fold
convolution of f , denoted f ∗n. The scaling has the effect of changing this to nf ∗n(nx). To see
this, compute

P(X/n < t) = P(X < nt)

=

∫ nt

−∞
f (s)d(s)

and changing variables s = ns′

=

∫ t

−∞
nf (ns′)ds′.
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Now it turns out that, provided the pdf f satisfies∫ ∞

−∞
x2 f (x)dx < ∞, (5.11)

i.e. has finite variance, that the n-fold convolution looks more and more like a Gaussian which
concentrates more and more at the mean value. To make this precise, assume that the mean value
of X is 0, or equivalently, ∫ ∞

−∞
x f (x)dx = 0.

(Otherwise, we can just shift our probability distribution by subtracting off the mean.) Then
(5.11) is precisely the variance σ . To obtain a mathematical formulation of this statement we
use a different scaling, one that keeps the variance fixed. It is not hard to compute that the
variance of f ∗n is nσ , the variance of af is aσ , and the variance of f (b·) is b−3σ . We will consider
дn(x) = n1/2 f ∗n(n1/2x); this has fixed variance σ .

Theorem 5.8 (Central Limit Theorem). Assume that f satisfies (5.11). Then the pdf дn converges
weakly to the normal distribution with variance σ , namely

(2πσ )−1/2e−x
2/2σ .

• Here, ‘weakly’ means that for every continuous function k on R that converges to 0 at
infinity, we have

lim
n→∞

∫ ∞

−∞
дn(x)k(x)dx =

∫ ∞

−∞
(2πσ )−1/2e−x

2/2σk(x)dx .

This is convergence ‘in the weak-∗ topology of measures’, as we will discuss later in the course.
This is equivalent to, by a change of variable

lim
n→∞

∫ ∞

−∞

(
nf ∗n(nx) − 1

√
2πσ

e−nx
2/2s

)
k(x)dx = 0

for all such k .
We first prove a lemma.

Lemma 5.9. (i) (Riemann-Lebesgue lemma) Suppose that f ∈ L1(R). Then f̂ is uniformly continu-
ous and tends to zero at infinity.

(ii) Suppose that f has finite variance (i.e. satisfies (5.11)). Then f̂ is C2.
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Proof: (i) Hölder’s inequality shows that f̂ is bounded, with ∥ f̂ ∥∞ ≤ ∥ f ∥1. To show continuity,
given ϵ > 0, we choose R > 0 large enough that

∫
|x |>R | f | < ϵ . Then, we choose δ small enough

so that |1 − eiy | < ϵ ∥ f ∥−11 for all |y | ≤ δR. Then, if |ξ1 − ξ2 | < δ , we have

| f̂ (ξ1) − f̂ (ξ2)|

≤
����
∫ R

−R
(e−ixξ1 − e−ixξ2)f (x)dx +

∫
|x |>R

(e−ixξ1 − e−ixξ2)f (x)dx
����

≤ ϵ ∥ f ∥−11 ∥ f ∥1 + 2∥ f ∥L1({|x |>R})
< 3ϵ

so f̂ is uniformly continuous.
To prove that f̂ (ξ ) → 0 as |ξ | → ∞, we use the density of S(R) in L1(R). Given ϵ > 0, and

f ∈ L1(R), choose φ ∈ S(R) such that ∥ f − φ∥1 < ϵ . Since φ̂ ∈ S(R) it tends to zero at infinity.
On the other hand, Ef − φ is bounded by ϵ in L∞. Therefore, lim sup|ξ |→∞ | f̂ (ξ )| ≤ ϵ . Since this is
true for all ϵ > 0, we have lim sup|ξ |→∞ | f̂ (ξ )| = 0, which is equivalent to saying that f̂ (ξ ) → 0

as |ξ | → ∞.
Part (ii) follows readily from (i). Observe x f and x2 f are both in L1, and use the fact that

Fourier transform intertwines multiplication by x and differentiation. □

Proof of CLT: We use the Fourier transform. The Fourier transform of дn(x) is ( f̂ (ξ/n1/2))n.
Now, the condition (5.11) implies that f̂ is C2, and that the second derivative of f̂ at ξ = 0 is −σ .
(Since −D2 f̂ (0) = −x̂2 f (0) = −

∫ ∞
−∞ e

0x2 f (x)dx .) Also, the mean value of X being zero implies
that the first derivative of f̂ at ξ = 0 is zero. That means, at ξ = 0, that

f̂ (ξ ) = 1 − σξ 2/2 + o(ξ 2).

(Recall that o(ξ 2) here means that for every ϵ > 0, there is a δ > 0 so that if |ξ | < δ then

| f̂ (ξ ) − (1 − σξ 2/2)| < ϵξ 2

or

1 − (σ/2 + ϵ)ξ 2 ≤ f̂ (ξ ) ≤ 1 − (σ/2 − ϵ)ξ 2.)

Now scaling ξ and raising to the nth power, we get(
1 − (σ/2 + ϵ)ξ 2/n

)n
≤ д̂n(ξ ) ≤

(
1 − (σ/2 − ϵ)ξ 2/n

)n
.
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This is now valid for |ξ |/n1/2 < δ , which for a fixed ξ and δ is true for large enough n. Therefore,
for fixed ϵ , and ξ , we can take the limit as n → ∞ and obtain

e−(σ/2+ϵ)ξ
2 ≤ lim

n
д̂n(ξ ) ≤ e−(σ/2−ϵ)ξ

2
.

Since this is true for all ϵ > 0 we obtain

lim
n
д̂n(ξ ) = e−σξ

2/2.

Note also that |д̂n(ξ )| ≤ 1 everywhere, since ∥дn∥1 = 1.
Let us denote the integral

∫
R
f (x)k(x)dx by ⟨f ,k⟩. To complete the proof we need to compute

lim
n→∞
⟨дn(x) −

1
√
2πσ

e−x
2/2s ,k(x)⟩ = 0.

To check that a sequence of functions hn (uniformly bounded in L1 norm) converges weakly to
zero, it is only necessary to check on a subspace (of continuous functions converging to 0 at ∞)
which is dense with respect to the sup norm.

Suppose limn→∞
���∫ hn(x)k

′(x)dx ��� = 0, and sup |k′ − k | < ϵ .

lim
n→∞

�����
∫

hn(x)k(x)dx
����� = lim

n→∞

�����
∫

hn(x)k
′(x) − hn(x)(k′(x) − k(x))dx

�����
≤ lim

n→∞

�����
∫

hn(x)k
′(x)dx

�����+ sup ��k′ − k ��∫ |hn | dx

< 0 + ϵ ∥hn∥1

Now the Schwartz functions are just such a dense subspace. (To see this, take an arbitrary
continuous function h converging to 0 at ∞. Multiply it by a smooth compactly supported func-
tion which is identically 1 for |x | < R, for sufficiently large R that this is close in sup norm to
h. Now convolve with some φδ to smooth it, and show that, as in the proof of Theorem 5.6, for
sufficiently small δ this is close enough in sup norm.)

So assume that k is Schwartz. Using Parseval’s formula, we have

lim
n→∞
⟨дn(x),k(x)⟩ = (2π)−1 lim

n→∞
⟨д̂n, k̂⟩.

Since k̂ is Schwartz, hence certainly L1, and |дn(ξ )| ≤ 1 and converges pointwise, we can use the
dominated convergence theorem to show that the limit is

1

2π
⟨e−σξ2/2, k̂⟩.
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Using Parseval again, this is equal to

⟨G(e−σξ2/2),k⟩,

which completes the proof since we know that

G(e−σξ2/2) = (2πσ )−1/2e−x
2/2σ .

□

5.7 A counterexample

To show that the finite variance condition is necessary consider the following innocent-looking
probability distribution:

ψ (t) =
1

π

1

1 + t2
.

Since this is an analytic function, the Fourier transform can be computed using contour integra-
tion, and we obtain

ψ̂ (ξ ) = e−|ξ | .

The idea here is to approximate the integral defining the Fourier transform by the contour
integral along a semicircular contour, with diameter [R,−R]. Depending on the sign of ξ , this
only works for a semi-circle above the x-axis or below the x-axis (so that we can show in the limit
the contribution from the semicircular piece of the contour vanishes). We see that 1/(1+ t2) has
poles at ±i , so depending on which contour we are using we evaluate the residue at the relevant
enclosed pole, and use Cauchy’s theorem to obtain the answer. If we take independent random
variables X1 and X2 with distribution ψ , then (X1 + X2)/2 also has distribution ψ ! To see this,
note that the Fourier transform of the distribution of (X1 + X2)/2 is ψ̂ 2(ξ/2) = ψ̂ (ξ ). Thus, this
distribution does NOT become Gaussian after repeated averaging.

The problem withψ , of course, is that it does not have finite variance (or even a well-defined
mean), and consequently, its Fourier transform is, quite visibly, not C2.

A few notes on central limit theorems:

• In our proofs we said nothing about the rate of convergence; this can be quantified, for
example in the Berry-Esséen theorem.

• There’s a zoo of extensions; more precisely, we’ve proved here the Lindeberg-Lévy CLT.
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• If we don’t assume the random variables are identically distributed, there’s the Lindeberg-
Feller theorem and Liapounov’s theorem.

• It’s also possible to say something about the infinite variance case, where under some condi-
tions the averages converge to one of the “stable distributions”. The counterexample above
is in fact a Cauchy distribution, which is one of the stable distributions.
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