6 Fundamental solutions

The Fourier transform is the perfect tool for finding fundamental solutions of constant coefficient
differential operators in R".
Consider the problem of solving
P(D)u=f

in R", where D stands for (D;....,D,), Di = —id, is the partial derivative in the ith direction,
and P is a polynomial. We suppose that f € S(R") is given and want to find a solution u. We
might also want to know, for example, if f € L? implies that u € L2

If there is a solution, then Fourier transforming, we have
P(§)i=f.
Therefore, if P(£) never vanishes, there is a solution (£) = P(£)~! f(£) to this equation. Taking
the inverse Fourier transform we get our solution u.
Moreover, using our results on convolutions, if #(£) = P(£)™'f(¢), then u = G(P(¢)™) * f,
so if we can compute G(P(£)~!) then we get a solution without explicit mention of the Fourier

transform.

6.1 The Laplacian

Let’s consider the most important PDE of all — Laplace’s equation —Au = f. Here A is the
Laplacian, given by
LIPE
Af(x) = ; =

If we try to solve —Au = f in this way, we get 4(¢) = |£|"2f(&), and the singularity at £ = 0
causes some difficulties. To avoid these let me look instead at (~A +A%)u = f where A > 0. Now
P(£) = A% + |£]? has no zeroes. Thus P(£)~' € BC®(R"). Can we compute the inverse Fourier
transform of P(£)71?

Let’s do this just in dimension 3, which is interesting both because it describes our physical
world and because we can compute the inverse Fourier transform exactly. Note that in dimension
3, (I._EI2 + /12)’1 is in L2, so the inverse Fourier transform is well defined, but it is not in L', so
it is not defined as a convergent integral. Rather, it is defined as a limit of the inverse Fourier

transform of Schwartz functions.
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Next I claim that the function
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goes to zero in L>(R?) when y is the contour from r = R to r = —R anticlockwise along the
circle |r| = R in the complex r-plane. In fact, we can also bound wg(x) by (6.1), using a similar
argument as for vg, from which the claim follows.

We now have a closed contour around which we integrate the analytic function e/*"r(r? +
22)71. By Cauchy’s residue theorem, the integral is given by the 27i times the residue of the

function at its unique pole in this region, which is at r = iA. Hence the value of the integral is

given by
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So, the solution of the equation (—A + )LQ)u = fon R3is

1 A=yl
u(x) = ELJ ﬂf(y) dy.

If we formally take the pointwise limit A — 0 in this integral, we obtain the putative formula
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for ‘the” solution to —Au = f. This can be justified when, for example, f is compactly supported
and L2. Then u given by (6.2) is the unique solution to this equation that tends to zero at infinity.
However, generally u will not be in L2. In fact, we will have u(x) = ¢/|x| + O(|x|™?) as x — oo

with ¢ usually # 0.

To compute it, choose a function ¢ € C°(Rxo) which is equal to 1 on the interval [0, 1] and is
zero outside [0, 2). Then the function ¢(|€|/R)(1€|>+4%)" is in S(R?) for all R > 0 and converges
inL? to (€12 + %)™ as R — co.

Now consider the integral
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The ¢ integral is trivial and gives a factor of 27. To do the theta integral, let u = —cos 6. Then
sin 0d6 = du and we obtain
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We can write this as an integral from —co to co:
5 Rl R
—i(2m) 72 |x| ! ﬁm e"x‘rL’(‘Z‘:l,/A?) rdr.
‘We want the limit of this integral as R — co. We can check that
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tends to zero in L*(R?) (as a function of x) as R — co. In fact the integral can be bounded
by Clx|™!, or, by integrating by parts (integrate the exponential and differentiate the rest), by
Clx|2R™". Therefore the function vg(x) can be bounded by
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and one can check that the L? norm here is O(R’l/Q), which certainly tends to zero as R — co.
Thus we can throw out the contribution to the integral for |r| > R. This expression no longer

depends on our cutoff function ¢ at all, since ¢ is identically 1 for |r| < R. We obtain

Let us check directly that if f € C2(R3), then u given by (6.2) satisfies Au = f: We compute
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The O(€) term is from the boundary integral, and we discard it since we are taking the limit e — 0.

Now the integrand is equal to
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and the first term vanishes since Ayﬁ = 0 away from the singularity at 0, while the second term

becomes a boundary term using Green’s Theorem. So we get
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e We cannot apply the A, operator directly to the 1/|x — y| term in the first line, since the
second partial derivatives of 1/|x — y| are not integrable as is required by the DUTIS theorem. If
you illegally did this, you would end up proving that Au = 0, which is false!

o The second line of this derivation shows that if f € C2, with compact support, then u € C2.
This can be improved to f € C!' = u € C, but it is not true that f € C° = u € C? as
you might expect. However, there are two analogous statements that are true: if f € L2, then
u has all its second derivatives in L?; and if f € C%thenu € C2¢_ (This expresses that u has
continuous 2nd partial derivatives, which are Hélder continuous with exponent «, i.e. satisfy
|f(x) = f(y)| < Clx — y|*.) These statements express the ‘ellipticity’ of A.
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6.2 Heat equation
The heat equation on R" X R is the equation
u(x,t) = Au(x,t), xeR" t>0
supplemented with the initial condition
u(x,0) = f(x).

Assume that f is a Schwartz function. Then we can find a solution that is a continuous
function of t with values in Schwartz functions of x. Fourier transforming in the x variable but

not the ¢ variable (which would not make sense since the solution is only defined for t > 0) we
get
iy = -lela, a(E,0) = ().

This is an ODE in ¢ for each fixed ¢, and the solution is
i(E0) = (g 0) = ().
Hence, the function u is given by a convolution:
ulx,t) = G(e )« 1.

So we need to know the inverse Fourier transform of e”¥*. But we have already worked this
out, and the answer is
g(eflf\zl) — (4,”)—"/224,42/45

To summarize, the solution of the PDE is
u(x,t) = (47rt)"‘/2f e"x’y‘z/‘“f(y) dy.
R

The function (47t)~/2¢=*=¥*/4 js called the ‘heat kernel’ on R". It may be regarded as the

solution to the heat equation with initial condition f = &, (x).



