6 Fundamental solutions

The Fourier transform is the perfect tool for finding fundamental solutions of constant coefficient
differential operators in R".
Consider the problem of solving
P(D)u = f

in R", where D stands for (Dy,...,D,), D; = —idy, is the partial derivative in the ith direction,
and P is a polynomial. We suppose that f € S(R") is given and want to find a solution u. We
might also want to know, for example, if f € L? implies that u € L.

If there is a solution, then Fourier transforming, we have

~

P(&)u= f.

Therefore, if P(£) never vanishes, there is a solution 4(¢) = P(£)~!f(£) to this equation. Taking
the inverse Fourier transform we get our solution u.

Moreover, using our results on convolutions, if #(¢) = P(£)7 £ (£), then u = G(P(£)™!)  f,
so if we can compute G(P(£)!) then we get a solution without explicit mention of the Fourier

transform.

6.1 The Laplacian

Let’s consider the most important PDE of all — Laplace’s equation —Au = f. Here A is the
Laplacian, given by
" g2
A = 2 5l

If we try to solve —Au = f in this way, we get u({) = |§|_2f(§), and the singularity at £ = 0
causes some difficulties. To avoid these let me look instead at (—A +A%)u = f where A > 0. Now
P(&) = A% + |&]? has no zeroes. Thus P(¢)~! € BC®(R"). Can we compute the inverse Fourier
transform of P(&)~1?

Let’s do this just in dimension 3, which is interesting both because it describes our physical
world and because we can compute the inverse Fourier transform exactly. Note that in dimension
3, (€ |2 4+ )LQ)'1 is in L2, so the inverse Fourier transform is well defined, but it is not in L, so
it is not defined as a convergent integral. Rather, it is defined as a limit of the inverse Fourier

transform of Schwartz functions.



To compute it, choose a function ¢ € C:°(Rs() which is equal to 1 on the interval [0, 1] and is
zero outside [0, 2). Then the function ¢(|£|/R)(|£|>+A%)! is in S(R?) for all R > 0 and converges
inL?to (|&]> +A2) ' as R — oo.

Now consider the integral

6 ($0/R(ER + 1)) (6) = 2 [ gifﬁlf% "

Changing to polar coordinates, this is
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R .
r
0 0

0

The ¢ integral is trivial and gives a factor of 2. To do the theta integral, let u = —cos 6. Then

sin 8d0 = du and we obtain

_i(2]1')_2|x|—1 j;oo(eilﬁdr_e—ilxlr)}i<’::ilrdr.

We can write this as an integral from —oo to co:
. o [ ilx| ¢(Irl /R)
i(27)™%|x| Im e””—r2 y rdr.
We want the limit of this integral as R — co. We can check that
def . -2y.-1 ilx|r ¢(r/R)
vr(x) = —i(27)“|x| f e ———rdr
(x) = —i(27) Ly

tends to zero in L?(R3) (as a function of x) as R — co. In fact the integral can be bounded
by Clx|™!, or, by integrating by parts (integrate the exponential and differentiate the rest), by
Cl|x|™2R~!. Therefore the function vgr(x) can be bounded by

{I%’ if |x| < R71;

lxl%R, 1f|X'| > R_l

(6.1)

and one can check that the L? norm here is O(R™'/2), which certainly tends to zero as R — co.
Thus we can throw out the contribution to the integral for |r| > R. This expression no longer

depends on our cutoff function ¢ at all, since ¢ is identically 1 for |r| < R. We obtain



G((eP +22)7) =

R
; 1
lim —i(2 21,1 i|lx|r dr.
Rl—r}n;lo l< ]T) |X| ‘[Re r2+12 rar

Next I claim that the function

wgr(x) def —i(27) 2 |x| ! f)/~le'|’(|rr2+;/12 dr
goes to zero in L?(R3) when y is the contour from r = R to r = —R anticlockwise along the
circle |r| = R in the complex r-plane. In fact, we can also bound wg(x) by (b.1), using a similar
argument as for vg, from which the claim follows.
We now have a closed contour around which we integrate the analytic function e'*"r(r? +
A%)71. By Cauchy’s residue theorem, the integral is given by the 27i times the residue of the

function at its unique pole in this region, which is at r = iA. Hence the value of the integral is

given by
ile Ml 1 e Al
—i-27i- lxl"Y(27) 2 - = .
F2m 2 e = T
We have thus shown that
1 e~AlXl

G (1P +2%)7) = -5

So, the solution of the equation (=A + A?)u = f on R3 is

e—/llx— |
ux) = 1= [ e ).

:E 3 |x -yl

If we formally take the pointwise limit A — 0 in this integral, we obtain the putative formula

u(x) l‘g L fw)dy 62)

:E 3 |x =yl

for ‘the’ solution to —Au = f. This can be justified when, for example, f is compactly supported
and L. Then u given by (6.9) is the unique solution to this equation that tends to zero at infinity.
However, generally u will not be in L2. In fact, we will have u(x) = ¢/|x| + O(]x|™2) as x — oo

with ¢ usually # 0.



Let us check directly that if f € C2(R3), then u given by (b.d) satisfies Au = f: We compute

A [ = pwdy = - [ plx-wdy
f ~Acf(x - y))dy
-

= hmf —(=A, f(x - d

=0 Jr3\B(0,¢) Iyl( uf (x=y))dy
:limf Oy, —(0y, f(x —y))dy + O(e).
B 0y 2 (00 f (= 4) dy -+ O(e)

The O(e) term is from the boundary integral, and we discard it since we are taking the limit e — 0.

i
lyl

1
|— -Ayf(x—y))dy

Now the integrand is equal to

(Aylyl Zayl( ] y))

and the first term vanishes since Ayﬁ = 0 away from the singularity at 0, while the second term

becomes a boundary term using Green’s Theorem. So we get

1
= limf Vi(0y,—)f(x—y)d

1
= lim x—vy)d
= lim f(x—ey)dy
€>0 JsB(0,1)

= 10B(0, 1)If (x) = 4 f (x).

e We cannot apply the A, operator directly to the 1/|x — y| term in the first line, since the
second partial derivatives of 1/|x — y| are not integrable as is required by the DUTIS theorem. If
you illegally did this, you would end up proving that Au = 0, which is false!

e The second line of this derivation shows that if f € C2, with compact support, then u € C2.
This can be improved to f € C' = u € C?, but it is not true that f € C° = u € C? as
you might expect. However, there are two analogous statements that are true: if f € L2, then
u has all its second derivatives in L%; and if f € C% thenu € Cc2a, (This expresses that u has
continuous 2nd partial derivatives, which are Holder continuous with exponent «, i.e. satisty
|f(x) = f(y)| < Clx —y|*.) These statements express the ‘ellipticity” of A.
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6.2 Heat equation

The heat equation on R" X R is the equation
u(x,t) = Au(x,t), xeR, t>0
supplemented with the initial condition

u(x,0) = f(x).

Assume that f is a Schwartz function. Then we can find a solution that is a continuous
function of t with values in Schwartz functions of x. Fourier transforming in the x variable but
not the ¢ variable (which would not make sense since the solution is only defined for t > 0) we
get

i = —1E1%a,  a(£,0) = f(&).

This is an ODE in t for each fixed ¢, and the solution is
a(g.0) = e a(E,0) = KT F(9).
Hence, the function u is given by a convolution:
u(x,t) = Q(e"g'%) % f.

So we need to know the inverse Fourier transform of e”!"?. But we have already worked this

out, and the answer is
g(e—|§|2f) _ (4m)—n/2e—lxl2/4t'

To summarize, the solution of the PDE is

uxot) = (4t 2 [ eI dy

n

The function (47t)™" 2¢-Ix-yl*/4t 5 called the ‘heat kernel’ on R". It may be regarded as the

solution to the heat equation with initial condition f = J,(x).
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