
6 Fundamental solutions

The Fourier transform is the perfect tool for finding fundamental solutions of constant coefficient
differential operators in Rn.

Consider the problem of solving
P(D)u = f

in Rn, where D stands for (D1, . . . ,Dn), Di = −i∂xi is the partial derivative in the ith direction,
and P is a polynomial. We suppose that f ∈ S(Rn) is given and want to find a solution u. We
might also want to know, for example, if f ∈ L2 implies that u ∈ L2.

If there is a solution, then Fourier transforming, we have

P(ξ )û = f̂ .

Therefore, if P(ξ ) never vanishes, there is a solution û(ξ ) = P(ξ )−1 f̂ (ξ ) to this equation. Taking
the inverse Fourier transform we get our solution u.

Moreover, using our results on convolutions, if û(ξ ) = P(ξ )−1 f̂ (ξ ), then u = G(P(ξ )−1) ∗ f ,
so if we can compute G(P(ξ )−1) then we get a solution without explicit mention of the Fourier
transform.

6.1 The Laplacian

Let’s consider the most important PDE of all — Laplace’s equation −∆u = f . Here ∆ is the
Laplacian, given by

∆f (x) =
n∑

i=1

∂2 f

∂x2i
(x).

If we try to solve −∆u = f in this way, we get û(ξ ) = |ξ |−2 f̂ (ξ ), and the singularity at ξ = 0

causes some difficulties. To avoid these let me look instead at (−∆+λ2)u = f where λ > 0. Now
P(ξ ) = λ2 + |ξ |2 has no zeroes. Thus P(ξ )−1 ∈ BC∞(Rn). Can we compute the inverse Fourier
transform of P(ξ )−1?

Let’s do this just in dimension 3, which is interesting both because it describes our physical
world and because we can compute the inverse Fourier transform exactly. Note that in dimension
3, (|ξ |2 + λ2)−1 is in L2, so the inverse Fourier transform is well defined, but it is not in L1, so
it is not defined as a convergent integral. Rather, it is defined as a limit of the inverse Fourier
transform of Schwartz functions.
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To compute it, choose a function φ ∈ C∞c (R≥0) which is equal to 1 on the interval [0, 1] and is
zero outside [0, 2). Then the functionφ(|ξ |/R)(|ξ |2+λ2)−1 is inS(R3) for all R > 0 and converges
in L2 to (|ξ |2 + λ2)−1 as R → ∞.

Now consider the integral

G
(
φ(|ξ |/R)(|ξ |2 + λ2)−1

)
(ξ ) = (2π)−3

∫
eix ·ξ

φ(|ξ |/R)
|ξ |2 + λ2

dξ .

Changing to polar coordinates, this is

(2π)−3
∞∫

0

φ(r/R)

r2 + λ2
r2dr

π∫
0

ei |x |r cosθ sinθ dθ
2π∫
0

dϕ.

The ϕ integral is trivial and gives a factor of 2π . To do the theta integral, let u = − cosθ . Then
sinθdθ = du and we obtain

−i(2π)−2 |x |−1
∫ ∞

0
(ei |x |r − e−i |x |r )φ(r/R)

r2 + λ2
r dr .

We can write this as an integral from −∞ to∞:

−i(2π)−2 |x |−1
∫ ∞

−∞
ei |x |r

φ(|r | /R)
r2 + λ2

r dr .

We want the limit of this integral as R → ∞. We can check that

vR(x)
def
= −i(2π)−2 |x |−1

∫
|r |≥R

ei |x |r
φ(r/R)

r2 + λ2
r dr

tends to zero in L2(R3) (as a function of x ) as R → ∞. In fact the integral can be bounded
by C |x |−1, or, by integrating by parts (integrate the exponential and differentiate the rest), by
C |x |−2R−1. Therefore the function vR(x) can be bounded by


1
|x | , if |x | ≤ R−1;

1
|x |2R , if |x | ≥ R−1

(6.1)

and one can check that the L2 norm here is O(R−1/2), which certainly tends to zero as R → ∞.
Thus we can throw out the contribution to the integral for |r | > R. This expression no longer

depends on our cutoff function φ at all, since φ is identically 1 for |r | ≤ R. We obtain

2



G
(
(��ξ ��2+λ2)−1) =

lim
R→∞
−i(2π)−2 |x |−1

∫ R

−R
ei |x |r

1

r2 + λ2
r dr .

Next I claim that the function

wR(x)
def
= −i(2π)−2 |x |−1

∫
γ
ei |x |r

r

r2 + λ2
dr

goes to zero in L2(R3) when γ is the contour from r = R to r = −R anticlockwise along the
circle |r | = R in the complex r -plane. In fact, we can also bound wR(x) by (6.1), using a similar
argument as for vR , from which the claim follows.

We now have a closed contour around which we integrate the analytic function ei |x |rr(r2 +

λ2)−1. By Cauchy’s residue theorem, the integral is given by the 2πi times the residue of the
function at its unique pole in this region, which is at r = iλ. Hence the value of the integral is
given by

−i · 2πi · |x |−1(2π)−2 · iλe
−λ |x |

2iλ
=

1

4π

e−λ |x |

|x | .

We have thus shown that
G
(
(��ξ ��2 + λ2)−1

)
=

1

4π

e−λ |x |

|x | .

So, the solution of the equation (−∆+ λ2)u = f on R3 is

u(x) =
1

4π

∫
R3

e−λ |x−y |

|x − y | f (y)dy.

If we formally take the pointwise limit λ → 0 in this integral, we obtain the putative formula

u(x) =
1

4π

∫
R3

1

|x − y | f (y)dy (6.2)

for ‘the’ solution to −∆u = f . This can be justified when, for example, f is compactly supported
and L2. Then u given by (6.2) is the unique solution to this equation that tends to zero at infinity.
However, generally u will not be in L2. In fact, we will have u(x) = c/|x | +O(|x |−2) as x → ∞
with c usually , 0.
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Let us check directly that if f ∈ C2
c (R

3), then u given by (6.2) satisfies ∆u = f : We compute

−∆x

∫
1

|x − y | f (y)dy = −∆x

∫
1

|y | f (x − y)dy

=

∫
1

|y | (−∆x f (x − y))dy

=

∫
1

|y | (−∆y f (x − y))dy

= lim
ϵ→0

∫
R3\B(0,ϵ)

1

|y | (−∆y f (x − y))dy

= lim
ϵ→0

∫
R3\B(0,ϵ)

∑
i

∂yi
1

|y | (∂yi f (x − y))dy +O(ϵ).

TheO(ϵ) term is from the boundary integral, and we discard it since we are taking the limit ϵ → 0.
Now the integrand is equal to

(∆y
1

|y | )f (x − y) −
∑
i

∂yi

(
(∂yi

1

|y | )f (x − y)
)

and the first term vanishes since∆y
1
|y | = 0 away from the singularity at 0, while the second term

becomes a boundary term using Green’s Theorem. So we get

= lim
ϵ→0

∫
∂B(0,ϵ)

∑
i

νi(∂yi
1

|y | )f (x − y)dy

= lim
ϵ→0

∫
∂B(0,ϵ)

1

|y |2 f (x − y)dy

= lim
ϵ→0

∫
∂B(0,1)

f (x − ϵy)dy

= |∂B(0, 1)| f (x) = 4π f (x).

• We cannot apply the ∆x operator directly to the 1/|x − y | term in the first line, since the
second partial derivatives of 1/|x −y | are not integrable as is required by the DUTIS theorem. If
you illegally did this, you would end up proving that ∆u = 0, which is false!
•The second line of this derivation shows that if f ∈ C2, with compact support, then u ∈ C2.

This can be improved to f ∈ C1 =⇒ u ∈ C2, but it is not true that f ∈ C0 =⇒ u ∈ C2 as
you might expect. However, there are two analogous statements that are true: if f ∈ L2, then
u has all its second derivatives in L2; and if f ∈ Cα , then u ∈ C2,α . (This expresses that u has
continuous 2nd partial derivatives, which are Hölder continuous with exponent α , i.e. satisfy
| f (x) − f (y)| ≤ C |x − y |α .) These statements express the ‘ellipticity’ of ∆.
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6.2 Heat equation

The heat equation on Rn × R+ is the equation

ut(x , t) = ∆u(x , t), x ∈ Rn, t > 0

supplemented with the initial condition

u(x , 0) = f (x).

Assume that f is a Schwartz function. Then we can find a solution that is a continuous
function of t with values in Schwartz functions of x . Fourier transforming in the x variable but
not the t variable (which would not make sense since the solution is only defined for t ≥ 0) we
get

ût = −|ξ |2û, û(ξ , 0) = f̂ (ξ ).

This is an ODE in t for each fixed ξ , and the solution is

û(ξ , t) = e−|ξ |
2tû(ξ , 0) = e−|ξ |

2t f̂ (ξ ).

Hence, the function u is given by a convolution:

u(x , t) = G(e−|ξ |2t) ∗ f .

So we need to know the inverse Fourier transform of e−|ξ |2t . But we have already worked this
out, and the answer is

G(e−|ξ |2t) = (4πt)−n/2e−|x |
2/4t .

To summarize, the solution of the PDE is

u(x , t) = (4πt)−n/2
∫
Rn

e−|x−y |
2/4t f (y)dy.

The function (4πt)−n/2e−|x−y |
2/4t is called the ‘heat kernel’ on Rn. It may be regarded as the

solution to the heat equation with initial condition f = δy(x).
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