
10 Complete normed spaces of functions

We are now in a position to define standard spaces of functions.
Let p ∈ [1,∞) and define Lp(X ,M, µ) to be the space of complex-valued measurable functions

f on X such that | f |p is integrable, modulo the equivalence relation of being equal a.e. w.r.t. µ.
This is a vector space which we endow with the p-norm

∥ f ∥p =
( ∫

X
| f (x)|p dµ

)1/p

.

Wehave to check that this is a norm. It is straightforward to see that it satisfies strict positivity
and homogeneity, but the triangle inequality is far from obvious!

Lemma 10.1 (Hölder’s inequality). If p−1 + q−1 = 1, then

����
∫

X
f (x)д(x)dµ

���� ≤ ∥ f ∥p ∥д∥q .
Proof: To show Hölder, it suffices by homogeneity to do this when ∥ f ∥p = ∥д∥q = 1. Then we
use Young’s equality

ab ≤ ap

p
+

bq

q
, a,b ≥ 0,

on the LHS, and integrate to find that the LHS is bounded by 1. □

By the way this is also valid (in fact, almost trivial) when p = 1 and q = ∞, where the L∞

norm is defined by

∥ f ∥∞ = inf
{
M | µ{x | | f (x)| > M } has measure zero

}
.

Thus ∥ f ∥∞ is finite if f can be modified on a set of measure zero so that it is bounded by M , and
∥ f ∥∞ is the smallest M with this property.

To show that ∥ · ∥p satisfies the triangle inequality, we write

S =
( ∫

X
| f + д |pdµ

)1/p

.

Then,
Sp ≤

∫

X
| f | | f + д |p−1 dµ +

∫

X
|д | | f + д |p−1 dµ .

Applying Hölder’s inequality to the expressions on the right hand side:

Sp ≤ ∥ f ∥p ∥ f + д∥p−1p + ∥д∥p ∥ f + д∥p−1p = (∥ f ∥p + ∥д∥p)Sp−1

1

and rearranging this gives the triangle inequality.
Now, in a normed vector space the infinite triangle inequality always holds. If we have x =

∑∞
i=1 xi = limN→∞

∑N
i=1 xi , then

| |x | | = lim
N→∞

������
������
N∑

i=1

xi

������
������ ≤ lim

N→∞

N∑

i=1

| |xi | | =
∞∑

i=1

| |xi | |

where in the first equality we use the fact that the norm is by definition continuous (it’s perhaps
that ‘most continuous’ function of all!), and in the second step we use the finite term triangle
inequality.

However, in what follows we will need to take some care with pointwise limits. Suppose we
merely have a function д which is defined via a pointwise limit:

д(x) =
∞∑

i=1

дi(x).

Can we use the triangle inequality with Lp norm? Suppose that the functions дi are all non-
negative. We can follow through our proof of the triangle inequality above, with one extra step.
Let

S =

(∫

X
|д(x)|pdµ(x)

)1/p

and so

Sp =

∫

X
|д(x)|pdµ(x)

=

∫

X
|д(x)| |д(x)|p−1dµ(x)

=

∫

X
lim
N→∞

*,
������
N∑

i=1

дi(x)
������
+- |д(x)|p−1dµ(x)

≤
∫

X
lim
N→∞

*,
N∑

i=1

|дi(x)|+- |д(x)|p−1dµ(x)

which by the monotone convergence theorem becomes

=
∞∑

i=1

∫

X
|дi(x)| |д(x)|p−1dµ(x)
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and applying the Hölder inequality in each term gives

Sp =
∞∑

i=1

| |дi | |p | |д | |p−1p

=
∞∑

i=1

| |дi | |pSp−1,

so

| |д | |p ≤
∞∑

i=1

| |дi | |p .

Lemma 10.2. For any Cauchy sequence { fn} in a metric space, there is a subsequence satisfying

d(fnk+1
, fnk ) < ϵ(k),

for any positive function ϵ(k).

Proof: For each k , there is some Nk so d(fa, fb) < ϵ(k) for all a,b ≥ Nk . Take nk to be the
maximum of {N0, . . . ,Nk }. □

Theorem 10.3. For 1 ≤ p ≤ ∞, the space Lp(X , µ) is complete under the norm ∥ · ∥p .

Proof of Theorem 10.3: We first do p = 1. Given a Cauchy sequence fn in L1(X , µ), we show that
it has a limit in L1(X , µ).

By passing to a subsequence, we may assume that

∥ fn − fn−1∥1 ≤ 2−n .

Then the function д = | f1 | + ∑∞
j=1 | fj+1 − fj | is an integrable function. As all the terms are

positive, we see that this series must be converging pointwise a.e. (the alternative is that on a
set of positive measure the series sums to ∞, but then the function would not be integrable). It
follows that the series f1(x)+

∑
j(fj+1(x)− fj(x)) converges a.e., since it converges absolutely a.e.

Let f (x) be the limiting function (defined a.e.). Then, fn → f pointwise a.e. and fn is dominated
by д, so

∫
| fn − f | → 0 by DCT.

For 1 < p < ∞, we can use essentially the same argument. Passing to a subsequence, we
assume

∥ fn − fn−1∥p ≤ 2−n .
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Now let

д(x) = | f1(x)| +
∞∑

n=2

| fn(x) − fn−1(x)|.

Then ∥д∥p ≤ ∥ f1∥p +
∑ 


| fn − fn−1 |


p < ∞. Therefore, д is finite a.e. We can see that

fn(x) = f1(x) +
n∑

j=2

(fj(x) − fj−1(x)),

and since the sum

f1(x) +
∞∑

j=2

(fj(x) − fj−1(x))

converges for a.e. x , the sequence { fn(x)} converges for a.e. x . Let f (x) be the limit of the
sequence { fn(x)}. Then we have fn → f a.e. and | fn |p ≤ дp , where дp is an integrable function.
Therefore, | f |p ≤ дp , i.e. f ∈ Lp . Also, | fn − f | → 0 a.e. and

| fn(x) − f (x)|p ≤
(
| fn(x) + | f (x)|

)p ≤ 2pдp,

which is an integrable function. We conclude that fn → f in Lp by the dominated convergence
theorem.

The proof for p = ∞ is different in character. Assume that the sequence fn is Cauchy in L∞.
Then given k there exists N (k) such that

| fn(x) − fm(x)| ≤ 2−k a.e. for n,m ≥ N (k).

Let Ckmn, for n,m ≥ N (k), be the set where this estimate fails. Then Ckmn has measure zero and
thus C = ∪k,m,nCkmn has measure zero. For x ∈ Cc , we have

| fn(x) − fm(x)| ≤ 2−k for n,m ≥ N (k). (10.1)

Thus, for x ∈ Cc , the sequence fn(x) is Cauchy. Let f (x) denote the limit of this sequence, and
define f arbitrarily (say, equal to 0) for x ∈ C . Then takingm → ∞ in (10.1),

| fn(x) − f (x)| ≤ 2−k for x ∈ Cc , n ≥ N (k).

Therefore ∥ f ∥∞ ≤ ∥ fN (k)∥∞ + 2−k , so f ∈ L∞, and fn → f in the L∞ norm. □
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