11 Radon-Nikodym derivatives

11.1 Signed measures

Let (X, M) be a measurable space. A signed measure is a map v from M to (—oo, o] with the

property that if E1, Ey, . .. are disjoint elements of M, then
v(UE) = Z v(E))-

Notice that this implies that if v(U;E;) < o, then the sum on the RHS is absolutely convergent, for
otherwise it would not be independent of the ordering of the E;. Sometimes we refer to (unsigned)
measures as positive measures to make the distinction clear.

An example of a signed measure is

) = [ fan

where (X, M, p1) is a measure space and f is a fixed real-valued function such that f_, the negative
part of f, is integrable. (This ensures that v can never take the value —co, which is not allowed.)
In fact, we shall soon prove that this is the only possibility.

Given a signed measure v, we define the total variation |v| : M — R as follows:
S
VI(E) = sup ) Iv(E;),
=
where we sup over all ways of decomposing E into a countable disjoint union of measurable sets
Ej.
Proposition 11.1. The total variation |v| is a positive measure satisfying
v< vl

Proof: We need to show that

oo

IVI(E) < )" 1vI(E;) and [VI(E) > )" IVI(E)
j=1

Jj=1

whenever E is written as a countable disjoint union of measurable sets E;.

Lemma 11.3. Fore > 0 there exists an N(e) so
i [Va(Ei) = vim(Ei)| < € forn,m > N(e).
i=1
Proof: The idea is to rewrite the sum as
3 0B (B = 3 )~ vEN + 3 )~ v )
i=1 i=1 i>1

for any choice of integer I, and then

I
< ; 1va(Ex) = V(B + D 1vn(ED)l + D Ivm(E)]

i>I i>1

for any integer k, and then

M-

<

1 (Es) = V(B + 2 ), i (B + |1l = 1ol + vl = el
i>I

i
(Note we made some fairly loose estimates there!) Nevertheless, this is enough, as we see that
we can make each term small.

The last two terms are eventually small, because {v,}, is a Cauchy sequence in M(X). In

particular, we can find some M(e) so for all a,b > M(e), we have |

Vel = \v,,lH < €/5. We now
pick our arbitrary integer k = M(e). Looking at the second term, we see that it is the sum of
absolute values of measures (with respect to the fixed measure v of the tail of some sequence of
sets). Thus we can choose our arbitrary integer I = I(e, M(€)) so that 3,1 [vk(E;)| < €/5. Finally,
the first term is just a finite sum, so we can find some N(e) > M(e) so that n,m > N(e) implies
that |v,(E;) — vim(E;)| < €/(51), and so the whole first term is at most €/5.

Certainly then, for every integer M,
M
Z [va(Ei) = vm(Ei)| < € for n,m > N(e).
i=1
Taking m to infinity, we find that
M

Z [va(E;) = v(E;)| < € for n > N(e).
=1
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To prove >, we choose numbers &; < |v|(E;). Then, we can find a partition E; = U;F;; into

a < Z [v(Fij)l.
J

Then U jF; is a partition of E, so we get
Dy Y (Rl < VI(E).
J i

Taking the sup over all possible a; proves >.

measurable sets such that

To prove <, we take a partition of E into measurable sets F;. Then we have

DEN = | D v(Fn )|
k k J

< Z [v(F N Ej)l < Z [VI(E)).
k.j J

Since this is true for each way of partitioning E, we find that
MIE) < ) MI(E)
J

as required.

The statement v < |v| is obvious. o

We can then write any signed measure as the difference of two positive measures, by writing

vl v=1vl

= 3 3 vy o

‘We say that v is o-finite if |v| is, and then v, and v_ automatically are as well.
Notice that the finite signed measures on a measurable space (X, M) form a vector space,
denoted M(X).

Theorem 11.2. M(X) is a complete normed space under the norm
Vllmexy = VI(X)-

Proof: Itis straightforward to show that || -||y(x) is a norm. Suppose that v; is a Cauchy sequence
in M(X). Then for each E € M, |v,(E) — vu(E)| — 0as m,n — oo, so lim, v,(E) exists for each E.
Define v(E) to be lim, v,,(E). We need to show that v is a finite signed measure.

To show countable additivity, suppose that E = U;E; is a disjoint union of measurable sets.

Since this is true for all M, we get
Z\v,,(El)—v(E,)\ <eforn> N(e). (11.1)
i=1

Now we can compute
V(E) = 3 v(E)| = limva(E) - Z v(E)|
i S E) - v
< limsu}’) DB = v(E)]
<e€ " x

by (11.1). Since this is true for all €, we see that v(E) = Y; v(E;), so v is countably additive, and
hence a signed measure. Now (11.1) with E; a partition of X shows that [|v, — vlly(x) — 0. This
shows that v is a finite measure and that v, — v under the total variation norm, completing the
proof. o

11.2 Absolute continuity

Definition 11.4.

—

. We say that a signed measure y is supported on a set A if y(E) = p(EN A) for all E € M.

N}

. Two signed measures y and v are mutually singular if they are supported on disjoint subsets.
This is denoted y L v.

©

. If v is a signed measure and y a positive measure, we say that v is absolutely continuous
w.rt. pif
H(E)=0 = v(E)=0.

If |v| is a finite measure then this last condition is equivalent to the assertion that for each
€ > 0 there exists § > 0 such that

H(E) <8 = IVI(E) <e,

while in general this is a strictly stronger assertion.



Example. Lebesgue measure, delta measures, and E — fff onR".
Exercise. Give an example where |v| is not finite, and the first assertion does not imply the
second.

Theorem 11.5 (Radon-Nikodym).
Let j1 be a o -finite positive measure on the measurable space (X, M) and v a o-finite signed measure.
Then we can write v = v, + v; where v, is absolutely continuous w.r.t. yi, and v and i are mutually

singular. Moreover, there exists an extended yi-integrable function f such that

va(E) = ff fau.

o A function is extended p-integrable if its negative part is integrable.

Proof: We first prove when y and v are both positive and finite measures. Once we have done
that, the general case is then not difficult.

We use Hilbert space ideas. Consider the Hilbert space L?(X, p) where p = y + v. Consider
the map

2op) sy i) = [yan
‘This is a bounded linear functional, since
i< [ wiavs [ide < o) iy
using Cauchy-Schwarz. Therefore [ is inner product with some element g of L*(X, p):
fwdv:ft//gdp forall y € L3(X, p). (11.2)

For any measurable set E, with p(E) > 0, set { = 1. Then we find that

v(E) = f 1pdv = f 1ggdp,

0< f 1egdp < p(E),

which implies that g < 1 a.e. w.r.t. p. By changing g on a set of p-measure zero, we can assume
that g < 1 everywhere.
Now we define A to be the set where g < 1 and B to be the set where g = 1. Putting / = 13,

we find that
v(B) = f 1gdv = f 1pgdp = f 1gdp = v(B) + u(B).
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Therefore, y(B) = 0. Since y is a positive measure, this means that y is supported in B¢ = A. So
define

vo(E) = v(ENA), v(E)=v(ENB).
‘We have just shown that v and p are mutually singular. Now we show that v, is absolutely

continuous w.r.t. y.

First we reformulate Equation (11.2) as

ftﬁ(l*g)dv:fwgdu-

It is tempting to try ¢/ = (1 — g)~*, which would then give

e = [av= [a-g0-gar= [1-g o

and the desired conclusion.
However, this is not allowed since (1 — g)™! ¢ L%(X, p) necessarily. Instead, we approximate,
setting
V=(0+g+g +...¢"l5m

which is bounded and therefore in L2. We obtain

1-gmt
1-gtt dv:f ——dy.
jl;nA( 9 HmAg -9 "

Since g < 1 on A, 1 — g"*! 1 1 pointwise, so by MCT we get

vu(E):v(EﬁA):f dv:f Ld,uA
EnA pal=g

This shows that v, is absolutely continuous and we may take f = g(1 — g)~!, which (by putting
E = X) the above equation shows is integrable w.r.t. y.

To prove for o-finite, positive measures y, v, we write X as the disjoint union of a countable
family E; of sets of finite measure. Let y;, v; be the restrictions of y, v to E;. Then we can decom-
pose vj as vj, + Vjs as above. Setting v, = ¥;vj, and v; = ¥; vjs we satisfy the conditions of
the theorem. To treat the case of a signed measure, we treat the positive and negative parts of v
separately. u]



