THE STONE-WEIERSTRASS THEOREM

Throughout this section, X denotes a compact Hausdorff space, for example a compact
metric space. In what follows, we take C(X) to denote the algebra of real-valued continuous

functions on X. We return to the complex valued case at the end.

Definition 12.1. We say a set of functions A c C(X) separates points if for every x,y € X,
there is a function f € A so f(x) # f(y).

Theorem 12.2 (Stone-Weierstrass (proved by Stone, published in 1948)).
Let A be a subalgebra of C(X) which

e contains the constants, and

e separates points.

Then A is uniformly dense in C(X).

Corollary 12.3 (Weierstrass approximation (1895)). Polynomials are uniformly dense in
C([a, b)).

I'll give a proof here adapted from §4.3 of Pedersen’s book Analysis Now.

Definition 12.4. Let A be a vector subspace of C(X). If A contains max{ f, g} and min{ f, g}
whenever f,g € A, then we call A a function lattice.

Definition 12.5. A set of functions A C C(X) separates points strongly if for x,y € X and
a,b € R, there is a function f € A so f(x) = aand f(y) = b.

Lemma 12.6. If a subspace A C C(X) separates points and contains the constants, it

separates points strongly.

Lemma 12.7. If A is a subalgebra of C(X), then for f, g € A, max{f, g} and min{f, g} are

in A, the uniform closure of A. (That is, A is a function lattice.)

Lemma 12.8. Suppose A is a function lattice which separates points strongly. Then A is
uniformly dense in C(X).

Proof of the Stone-Weierstrass theorem:

The algebra A separates points strongly, by Lemma [12.6. Clearly A also separates points
strongly, and by Lemma [12.7 it is also a function lattice. Finally, by Lemma we have
that A is uniformly dense in C(X), so A = C(X), as desired. O

Proof of Lemma [12.6: Given x,y € X, find f € A so f'(x) = a’ and f'(y) = V', for some
a’ # b’. Then the function f” = J;T_Z, satisfies f”(x) = 0, and f”(y) = 1, so the function

f = (b—a)f” + ahas the desired property. O
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Proof of Lemma [12.7: Let € > 0. The function ¢ — (e2+1)/2 has a power series expansion
that converges uniformly on [0, 1] (e.g., the Taylor series at t = 1/2).

We can thus find a polynomial p so |(e2 + t)%/? — p(t)| < e for all t € [0, 1].

Observe that at t = 0 this gives |[p(0)] < 2e, and define q(t) = p(t) — p(0) (still a
polynomial). Certainly g(f) € A for any f € A, as A is an algebra. If f € A with
[|flleo < 1, we have

1g(f2) = 1f 11l = sup lg(f2(x)) = £2(x)?|

xeX

< sup [p(t) —p(0) — /7|
t€[0,1]

< 2e+ sup |p(t) — t1/2|
t€[0,1]

<3¢+ sup |(e2+ 1)/ -1/
t€[0,1]

< 4e.

Since g(f?) € A, we have shown that |f| € A.

Now
1
max{f,g} = 5(f +9+1f - 9gl)
and
) 1
min{f, g} = §(f +g9-1f -9l
so we are finished. O

Proof of Lemma [12.8: Fix € > 0 and f € C(X). We will find f, € A with ||f - fi|le < €.
For each x, y € X, choose f;, € A with

fxy(x) = f(x) and fxy(y) = f(y)

(this is possible because A separates points strongly). Define the open sets

Uy = {z € X|f(2) < fxy(z) + €}
Viy =z € X|fiy(2) < f(2) + €}.

Observe x,y € Uy N Vyy.

Fix x for a moment. As y varies, the sets Uy, cover X. Since X is compact, we can find
Y1, UYn 50 X = (JUyy,. Define f, = max{f,,,}. Since A is a function lattice, f, € A.
Moreover, f(z) < fi(z) + € for every z € X. Also, if we define W, = " Vy,,, we see Wy is
an open neighbourhood of x, and fi(z) < f(z) + € for every z € W,.
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The sets {W,}rex cover X, so applying compactness again we find x1,...,x, so X =
U W,. Finally we define f = min{f;,}, which is again in (A as it is a function lattice.
Observe that we still have

f(2) < fe(z) + e
and now
fe(z) < f(z) + e

for every z € X, giving the desired result. O

Finally, what about C(X, C), the complex valued continuous functions? We give a slightly

revised version of the main theorem:

Theorem 12.9. Let A be a (complex) subalgebra of C(X, C) which
e is self-adjoint, i.e. for every f € A, the complex conjugate f € A also,
e contains the complex constants, and

e separates points.

Then A = C(X,C).

Proof: We can bootstrap from the real-valued theorem.
Since A is self-adjoint, if f € Athen Rf € Aand I f € A, since Rf = %(f + £).
Let
A = {f € A|f is real-valued}.
Easily, Ax contains R. We see that it still separates points, as follows. Suppose we have
x,y € X, and a complex valued function f € A so f(x) # f(y). Then for some constant c,
[f(x) + ¢l # | f(y) + c|. Thus the real-valued function

2z (f(z) +e)(f(2) +¢)
which is still in A also separates x and y.
Thus by the real-valued version of the theorem we have that Ax = C(X,R). Finally,
given f € C(X,C), we can write f = R f + iJf, and approximate separately the real and
imaginary parts using Ax. |

e Trigonometric polynomials are uniformly dense in C([0, 1]) even though the Fourier
series need not converge uniformly.

e The hypothesis that A c C(X, C) be self-adjoint is essential. Consider, for example,
the holomorphic functions on X the unit disc.
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