
9 Integration theory

Integration theory is set up for a general measure just as for Lebesgue measure. We first define
the integral on simple functions, then on bounded measurable functions of compact support, then
on nonnegative measurable functions and finally on all measurable functions.

We have the following definitions:
• Ameasure µ is complete if every subset of a measure zero set is measurable (and necessarily
has measure zero)

• Ameasure space (X ,M, µ) isσ -finite ifX can bewritten as a countable union of measurable
sets, each with finite measure.

For the remainder of this section, we’ll assume our measure spaces are complete and σ -finite
wherever convenient.

• Let (X ,M, µ) be a measure space. A function f : X → [−∞,∞] is measurable if the inverse
image of every open set is measurable. (It is sufficient to require that the inverse image of
[−∞,a) is measurable for each a ∈ R.)

• A function д : X → C is measurable if its real and imaginary parts are.
• A function is simple if it a finite linear combination of characteristic functions ofmeasurable
sets.

Then we have the properties:
• If fn are measurable functions, then sup fn, inf fn, lim sup fn, lim inf fn are measurable;
• If f (x) = lim fn(x) then f is measurable;
• If f and д are measurable, then powers f k are measurable, k ≥ 1, and if they are both
finite-valued then f + д and f д are measurable.

• if f = д a.e. with respect to µ and f is measurable then д is measurable.
We also have approximation properties:
• If f is nonnegative and measurable, then there exists a sequence of nonnegative simple
functions φn such that φn ≤ φn+1 and limn φn(x) = f (x); Take φn to the largest simple
function, with φn ≤ f , and values in 2−n{0, 1, 2, . . . , 22n}. Explicitly, this is

φn =
22n∑

k=0

k2−nχ f −1[k2−n ,(k+1)2−n) + 2nχ f −1[(22n+1)2−n ,∞).

• If f is measurable, then there exists a sequence of simple functions φn such that |φn | ≤
|φn+1 | and limn φn(x) = f (x).
Write f = f+ + f−, and use the approximation above.
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9.1 Defining the integral

As with the Lebesgue integral, we first define the integral on simple functions, then on bounded
measurable functions defined on a set of finite measure, then on nonnegative measurable func-
tions and finally on measurable functions. In each case, we check that the integral satisfies four
conditions:
• Linearity: for a,b ∈ R,

∫
(af + bд) = a

∫
f + b

∫
д.

• Additivity: if E and F are disjoint measurable subsets of X then
∫

E
f +

∫

F
f =

∫

E∪F
f .

•Monotonicity: if f ≤ д, then ∫
f ≤
∫

д.

• Triangle inequality: ����
∫

f
���� ≤
∫
| f |.

Step 1. The integral of a simple function f =
∑

i ai1Ei is defined to be
∫

f =
∑

i

aiµ(Ei).

It is crucial that this formula is independent of the representation of f as a simple function
(this uses the finite additivity of µ). We also define

∫

E
f =

∫
1E f .

Then we can check that the integral for simple functions satisfies all four conditions above.
Step 2. Bounded functions supported on a set of finite measure E. To define the integral

here we need Egorov’s theorem. Egorov’s theorem essentially says that a sequence of measurable
functions converging pointwise actually converges uniformly, away from a set of arbitrarily small
measure.

Theorem 9.1 (Egorov). Let fn be measurable functions converging pointwise on E to f . Then for
any ϵ > 0 there is a subset Aϵ of E of measure at least µ(E) − ϵ such that fn → f uniformly on Aϵ .

2

Proof: Consider sets
C
η
M = {x | | fn(x) − f (x)| < η for all n ≥ M }.

For any fixed η > 0, every x is in some Cη
M , and hence ∪MCη

M = E. Since Cη
M is an increasing

family of sets, µ(Cη
M)→ µ(E), by countable additivity.

Now we each n, we choose Mn so that with Bn = (C2−n

Mn
)c , the measure of Bn is less that 2−nϵ .

Note that we now have | fk(x) − f (x)| < 2−n for x < Bn and k ≥ Mn.
Then let B = ∪Bn and Aϵ = E \ B, and we see that fn → f uniformly on Aϵ since for

every n there exists Mn such that | fk(x) − f (x)| < 2−n, for x ∈ Aϵ and k ≥ Mn. Moreover,
µ(B) ≤ ∑n 2−nϵ = ϵ . □

Using this theorem, we see that if f is a bounded function on E, with | f | bounded by M say,
and if φn are simple functions converging pointwise to f , with each |φn | ≤ M , then the integrals∫
φn converge. It is not hard to check that the limit of the integrals is independent of the choice

of sequence φn (if it did depend on the choice, we could splice together two sequences with
integrals converging to different limits, and obtain a sequence whose integrals did not converge).
The integral of f is defined to be ∫

f = lim
n

∫

E
φn .

One then checks that the integral so defined has the properties of linearity, additivity, mono-
tonicity and the triangle inequality.

In fact, repeating the argument above using Egorov’s theorem proves the Bounded Conver-
gence Theorem (a baby version of the Dominated Convergence Theorem):

Theorem 9.2. Suppose that fn is a sequence of measurable functions that are all supported on a
fixed set E of finite measure, and uniformly bounded byM . If fn → f a.e., then

∫
fn →

∫
f .

Step 3. Nonnegative measurable functions. Notice that we trivially have the property that, if
f is bounded and supported on a set of finite measure E, then we have

∫
f = sup

∫
д

where the sup is over all bounded measurable д supported on E with д ≤ f . This follows from
monotonicity, showing that

∫
д ≤
∫
f for any such д, together with the fact that we may take

д = f .
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We use this to define the integral for nonnegative measurable functions. That is, if f is non-
negative and measurable, we define

∫
f to be the sup of

∫
д over all bounded functions д such

that 0 ≤ д ≤ f and д is supported on a set of finite measure. Notice that the value of the integral
might be +∞ (we use the convention that the sup of a set that is not bounded above is +∞).

Again you should check that the integral so defined has the properties of linearity, additivity,
monotonicity and the triangle inequality. These properties are all straightforward except for the
linearity property.

It is straightforward to check that
∫

c f = c

∫
f , c ≥ 0

for nonnegative measurable functions, so it suffices to check that
∫

(f1 + f2) =

∫
f1 +

∫
f2

for such functions. Given дi such that 0 ≤ дi ≤ fi and дi is bounded and supported on a set of
finite measure, the function д = д1 + д2 has the same property with respect to f1 + f2. Then

∫
д1 +

∫
д2 =

∫
д ≤
∫

(f1 + f2),

and taking the sup over all д1,д2 shows that
∫

f1 +

∫
f2 ≤

∫
(f1 + f2).

For the reverse inequality, suppose that 0 ≤ д ≤ f1 + f2 and д is bounded by M and supported
on a set of finite measure E. Define дi by

дi(x) =



0 if x < E

fi(x) if fi(x) ≤ M

M if fi(x) > M .

Then д1 + д2 ≥ д pointwise, giving
∫

д ≤
∫

д1 +

∫
д2 ≤

∫
f1 +

∫
f2

and taking the sup over all such д gives the opposite inequality.
Now in this setting it is no longer the case that fn → f a.e. implies that

∫
fn →

∫
f . You

have already seen examples, e.g. f = 0 and fn = n1[0,1/n] on the real line. However, an inequality
holds:
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Lemma 9.3 (Fatou’s lemma). Suppose that f ≥ 0, and that the sequence of functions fn is nonneg-
ative and converges to f a.e. Then

lim inf
n

∫
fn ≥

∫
f .

•Mass in the integral can ‘bubble off’ and escape in the limit. However, since fn are nonneg-
ative, only positive amounts of mass can be lost.

Proof: Take any 0 ≤ д ≤ f which is bounded and supported on a set of finite measure, and define
дn = min(д, fn). Then by the bounded convergence theorem,

∫
дn →

∫
д. Since дn ≤ fn, we have

lim
∫

дn = lim inf
∫

дn ≤ lim inf
∫

fn .

Hence
∫
д is less than lim inf

∫
fn, and taking the supremum over д gives the result. □

A corollary is

Theorem 9.4 (Monotone convergence theorem). Let f ≥ 0, and let fn be an increasing sequence
of measurable functions converging to f . Then

lim
∫

fn =

∫
f .

Step 4. General measurable functions. In this case, we cannot integrate all such functions;
we restrict to the class of integrable functions f , for which

∫
| f | < ∞.

To define the integral for real functions, we write f = д1 − д2, where дi ≥ 0. This can be done,
for example, by taking д1 = max(f , 0) and д2 = −min(f , 0). Then we define

∫
f =

∫
д1 −

∫
д2.

The integrals on the RHS are defined in Step 3. One needs to check that this is independent of
the representation f = д1 −д2. But if also f = h1 −h2, where hi ≥ 0, then д1 +h2 = д2 +h1. By
linearity of the integral in Step 3, we find that

∫
д1 +

∫
h2 =

∫
д2 +

∫
h1,
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which shows the value of
∫
д1 −

∫
д2 is independent of the choice of дi .

The integral of an integrable complex-valued function f = д + ih, where д,h are real, neces-
sarily integrable functions, is defined to be

∫
д + i

∫
h.

We can then check that the integral on integrable funtions is linear, additive, monotonic and
satisfies the triangle inequality.

Themost important convergence theorem in integration theory is the dominated convergence
theorem. To prove it we start with a lemma:

Lemma 9.5. Let д be an integrable function.
(i) Given ϵ > 0, there exists a set E of finite measure such that

∫

Ec
|д | ≤ ϵ .

(ii) Given ϵ > 0, there existsM > 0 such that, with A = {x | |д(x)| > M }, we have
∫

A
|д | ≤ ϵ .

To prove (i), define
En = {x | |д(x)| ≥ 1/n}.

Then En has finite measure, since
∫
|д | ≥ µ(En)/n. Let дn = |д |1En . Then дn → |д | monotonically,

so by the monotone convergence theorem,
∫

дn →
∫
|д |.

Thus, by taking n large enough, we have
∫

En

|д | =
∫

дn ≥
∫
|д | − ϵ .

To prove (ii), we define An to be the set where |д | ≥ n, and let дn = |д |1An . Then, since the
measure of the set where |д | = ∞ is zero, we have |д | −дn → |д | a.e. Therefore, by the monotone
convergence theorem, ∫

дn → 0.

Thus taking n sufficiently large, we have
∫
дn ≤ ϵ . and thus

∫
An
|д | ≤ ϵ .

Using this it is quite straightforward to prove the dominated convergence theorem:
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Theorem9.6. Suppose that the sequence fn ofmeasurable functions converges to f a.e. , and | fn | ≤ д

for some nonnegative integrable function д. Then
∫
| fn − f | → 0, and hence

∫
fn →

∫
f .

Proof: Using the previous lemma, choose a set E of finite measure such that д ≤ M on E, and
such that ∫

Ec

д < ϵ .

Then, ∫
| fn − f | =

∫

E
| fn − f | +

∫

Ec
| fn − f |.

By the bounded convergence theorem,
∫

E
| fn − f | → 0.

On Ec , we estimate | fn − f | ≤ 2д, and see that
∫

Ec
| fn − f | ≤

∫

Ec
2д ≤ 2ϵ .

Thus, lim sup
∫
| fn − f | ≤ 2ϵ , and since this is true for all ϵ > 0 we obtain the result. □

9.2 Product measures and Fubini’s theorem

Let X = X1 × X2 and suppose that (X1,M1, µ1) and (X2,M2, µ2) are two measure spaces.
Can we define a measure µ on X with the property that µ(A × B) = µ1(A)µ2(B) for all A ∈ M1

and B ∈ M2?
We can do this by defining a premeasure on an algebra of subsets of X , namely the algebraA

consisting of finite unions of disjoint rectangles, which by definition are sets of the form A × B,
where A ∈ M1 and B ∈ M2. This is an algebra: the complement of A× B is (A× Bc)∪ (Ac × B)∪
(Ac × Bc), while the union of two rectangles is the disjoint union of at most 6 rectangles.

We define our premeasure on the disjoint union ∪jAj × Bj by setting

µ0(∪jAj × Bj) =
∑

j

µ1(Aj)µ2(Bj).
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We have to check that this is independent of the representation as a disjoint union of rectangles
and that it satisfies countable additivity: whenever C ∈ A is the countable disjoint union of
rectangles Aj × Bj , then

µ0(C) =
∑

j

µ0(Aj × Bj).

It is enough to do this for rectangles A × B. We have for every x1 ∈ X1

1A(x1)µ2(B) =
∑

j

1Aj (x1)µ2(Bj)

using countable additivity of µ2. Then integrating in x1 and using the monotone convergence
theorem, we obtain

µ0(A × B) =
∑

j

µ0(Aj × Bj).

The premeasure µ0 generates a measure µ on the σ -algebraM generated by A. This defines
the product measure (X ,M, µ).

We shall now prove a Fubini theorem for this product measure. First, we prove a special case.
For any set E ⊂ X we define Ex2 to be

{x1 ∈ X1 | (x1,x2) ∈ E},

i.e. the slice through E with fixed second coordinate x2.

Proposition 9.7. Assume that µ1 and µ2 are both complete and σ -finite. Suppose that E ⊂ X is
measurable. Then for almost every x2 ∈ X2, Ex2 is measurable w.r.t. µ1, and

∫

X2

µ1(E
x2)dµ2 = µ(E).

Moreover, if E ∈ Aσδ , then the same is true with ‘almost every’ replaced by ‘every’.

Proof: We first prove the second statement. Thus, assume that E ∈ Aσδ . In fact, we first suppose
that E ∈ Aσ , i.e. is a countable union of rectangles. Without loss of generality, these rectangles
Ej = Aj × Bj are disjoint. The conclusion is obvious for a single rectangle. Noting that Ex2

j are
disjoint measurable sets inX1, countable additivity of µ1 and the monotone convergence theorem
show that the LHS is equal to

∑

j

∫
µ1(E

x2
j )dµ2 =

∑

j

µ1(Aj)µ2(Bj),
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which is equal to the RHS by countable additivity of µ.
Now for any set E ∈ Aσδ with µ(E) finite and also each slice has µ1(E

x2) finite, we can
write it as a countable intersection of Aσ sets Ej , which we may are assume are decreasing, and
then µ(Ej) → µ(E). Then the sets Ex2

j are a decreasing family with intersection Ex2 , which is
therefore measurable; moreover, if we define fj(x2) = µ1(E

x2
j ), and f (x2) = µ1(E

x2), then fj is
a nonincreasing family of finite measurable functions with fj → f . (We needed to assume that
each x2 slice had finite measure here; Stein & Shakarchi seems to make a mistake here.) Hence f

is measurable, and by the monotone convergence theorem,

lim
j

∫

X2

fj(x2)dµ2(x2) =

∫

X2

f (x2)dµ2(x2).

However, the LHS is limj µ(Ej) by our first result, which converges to µ(E) as we saw above. This
establishes the result for E ∈ Aσδ with µ(E) finite and each x2 slice finite. To treat the general
case, we take increasing sequences Fj , Gj in X1, X2 respectively, of sets of finite measure whose
union is Xi , and define Ej = E ∩ (Fj ×Gj). We apply the result to each Ej , and use the monotone
convergence theorem on the LHS and countable additivity on the RHS to deduce the result.

To prove the result for general E, we first show for sets E of measure zero. Then there exists
F ∈ Aσδ with E ⊂ F and µ(F ) = 0. The result already proved then shows that µ1(F

x2) is zero
for a.e. x2, hence by completeness of µ1, Ex2 is measurable for a.e. x2 (with measure zero). This
establishes the result for E with measure zero. In general, E ⊂ G where G ∈ Aσδ and Z = G \ E
has measure zero. Combining the results proved for Z and for G, we obtain the result for E. □

As a corollary, we see that a set E of measure zero in X has slices Ex2 which have µ1 measure
zero except on a set of µ2 measure zero.

Now we can prove

Theorem 9.8 (Fubini-Tonelli). Let X be as above. Suppose that f (x1,x2) is a nonnegative measur-
able function on X . Then

(i) the slice function f x2 defined by f x2(x1) = f (x1,x2) is measurable for a.e. x2;
(ii) x2 7→

∫
X1

f x2(x1)dµ1(x1) is measurable on X2;
(iii) ∫

X2

( ∫

X1

f x2(x1)dµ1

)
dµ2 =

∫

X1×X2

f dµ . (9.1)

Moreover, if f is integrable, rather than nonnegative, on X , then the conclusions are
(i) the slice function f x2 defined by f x2(x1) = f (x1,x2) is integrable (in particular, measurable)

for a.e. x2;
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(ii) x2 7→
∫
X1

f x2(x1)dµ1(x1) is integrable on X2;
(iii) (9.1) holds.

Proof: First, suppose that f = 1E for some µ-measurable set E ⊂ X . Then the result is precisely
given by the previous Proposition. Therefore the result holds for simple functions f by linearity
of the integral. Now suppose that f is nonnegative. Take an increasing sequence of simple
functions fn converging to f . Then f x2

n converges monotonically to f x2 , so by the MCT, we have
∫

X1

f x2
n (x1)dµ1 →

∫

X1

f x2dµ1(x1)

for every value of x2. Applying MCT again, we find that
∫

X2

( ∫

X1

f x2
n (x1)dµ1

)
dµ2

converges to ∫

X2

( ∫

X1

f x2(x1)dµ1

)
dµ2.

On the RHS, applying MCT once again shows that
∫

X1×X2

fndµ →
∫

X1×X2

f dµ .

Since the theorem holds for each fn, this shows that it also holds for f .
The second conclusion follows by applying the first to the positive and negative parts of f

separately (or the positive real, negative real, positive imaginary and negative imaginary parts
separately if f is complex-valued). □

Example. Integration in polar coordinates. Let (Sn−1,MSn−1,dθn) denote the standard (n−1)-
sphere with its usual σ -algebra (the Lebesgue measurable sets in any smooth coordinate chart)
and measure, and let (R≥,MR≥ , rn−1dr) denote the half-line with the Lebesgue measurable sets
and the measure rn−1 times Lebesgue measure dr . We can show that the product measure space
is naturally identified with Lebesgue measure on Rn. Then Fubini-Tonelli justifies integration in
polar coordinates.

9.3 Pushforward of measures
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Suppose that (X ,M, µ) is a measure space and that (Y ,C) is a measurable space (that is, a set
with a σ -algebra of sets). We say that F : X → Y is measurable if F−1(E) ∈ M whenever E ∈ C.

In this situation, we can define an induced measure on Y , the pushforward measure Fµ, as
follows:

(Fµ)(E) = µ(F−1(E)).

It is straightforward to check that this is countably additive on C.
Proposition 9.9. Let f : Y → R be measurable. Then,

∫

X
(f ◦ F )dµ =

∫

Y
f d(Fµ)

in the sense that when the RHS exists, so does the LHS and then they are equal.

Proof: This is true for f = 1E , the characteristic function of E ∈ C, by definition of Fµ. By
linearity it is true for all simple functions. We then show that it is true for nonnegative functions
using the MCT, as in the Fubini proof above, and finally, for all integrable functions. □

A very important case is the following: let R ⊂ Rn be a closed rectangle, and let F : R → Rn
be a C1 diffeomorphism onto its image, i.e. a C1 function with a C1 inverse G : F (R)→ R.

Theorem 9.10. The pushforward of Lebesgue measure dλ under F is equal to dλ | detDF |−1, or
equivalently, the pushforward of | detDF | · dλ is equal to dλ. Consequently, we have the change of
variable formula ∫

R
(f ◦ F )(x)| detDF (x)|dλ(x) =

∫

F(R)
f dλ. (9.2)

The proof is given in the notes for interest, but will not be covered in class.
The model situation is when F is an invertible linear map:

Proposition 9.11. Suppose that F is an invertible linear map. Then F (dλ) = | det F |−1dλ; that is,
the image of any measurable set E under F has measure | det F |dλ(E).

Proof: Any square matrix can be written as the product of a finite number of the following ‘ele-
mentary’ matrices: diagonal matrices; permutation matrices; and matrices of the form

Mc =

*........,

1 0 0 . . .

c 1 0 . . .

0 0 1 . . .

· · · ·
0 0 . . . 1

+////////-
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To see this, note that multiplying a matrix by the one above on the left has the effect of adding
c times row 1 to row 2. By combining with permutation matrices, we can add c times any row
to any other. If we multiply on the right instead, we can do column operations instead. Hence
we can apply row and column operations to any matrix, and eventually reduce it to a diagonal
matrix.

So to prove the theorem, it suffices to show for the elementary matrices, since both the deter-
minant and the volume-magnification factor are multiplicative. The result is obvious for diagonal
and permutation matrices since they map rectangles to rectangles with the correct measure ratio.
So it is enough to prove for Mc above. To do this it suffices to treat dimension 2.

So consider the effect of Mc on a rectangle R = [0,A] × [0,B], where A,B > 0. This gets
mapped byMc to a parallelogram P with sides from (0, 0) to (A, cA) and from (0, 0) to (0,B). But
P can be covered by n rectangles

[
A
j

n
,A

j + 1

n

]
×
[
cA

j

n
, cA

j + 1

n
+ B

]
,

and contains the n rectangles
[
A
j

n
,A

j + 1

n

]
×
[
cA

j + 1

n
, cA

j

n
+ B

]
.

Thus the measure of P is estimated by

n · A
n

(
B − cA

n

)
≤ µ(P) ≤ n · A

n

(
B +

cA

n

)
,

and hence µ(P) = AB = µ(R). □

For the next lemma, let Q be a closed rectangle, centred at the origin, such that the ratio
between the longest and shortest side is ≤ 2.

Lemma 9.12. Let F be a C1 map from Q to Rn, satisfying F (0) = 0 and

∥DF (x) −A∥ ≤ ϵ,

for sufficiently small ϵ and fixed invertible linear mapA : Rn → Rn. (Here we use the operator norm
on matrices:

∥A∥ = sup
|x |=1
|Ax |. )

Let ϵ′ = 2
√
n∥A−1∥ ϵ . Then, the image F (Q) contains (1 − ϵ′)AQ , and is contained in (1 + ϵ′)AQ .
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Proof: We first prove this with A equal to the identity. In that case, we compute for x ∈ Q

F (x) − x =

∫ 1

0

d

dt
(F (tx) − tx)dt

=

∫ 1

0
(DFtx(x) − x)dt , so

|F (x) − x | ≤
∫ 1

0
ϵ |x | dt = ϵ |x |.

Now let c1 be half the length of the shortest side of Q and let c2 = maxx∈Q |x |. By the condition
on Q we have 2

√
nc1 > c2. Therefore, F (x) is in the ϵc2 enlargement of Q . This is contained in

(1 + 2
√
nϵ)Q since the sides of this rectangle are at least 2

√
nc1ϵ ≥ c2ϵ from the corresponding

sides of Q . Hence, F (x) ∈ (1 + ϵ′)Q .
To show that F (Q) covers (1 − ϵ′)Q , we observe that F (∂Q) is disjoint from (1 − ϵ′)Q by the

argument above. For sufficiently small ϵ , the condition onDF ensures that this is invertible. Then,
by the inverse function theorem, F is locally a diffeomorphism, and therefore sends small open
balls to open sets. It follows that F maps the interior ofQ to interior points of F (Q), and therefore
the boundary of F (Q) is contained in F (∂Q).

Assume for a contradiction that there exists x0 ∈ (1 − ϵ′)Q not in the image of F . Consider
the line segment tx0, t ∈ [0, 1]. Then this goes from 0 = F (0) ∈ F (Q) to x0 < F (Q) without
intersecting ∂F (Q), which is a contradiction.

Now we treat the case of general A. Let F ′ = A−1 ◦ F . Then ∥DF ′ − Id ∥ ≤ ϵ ∥A−1∥, since
∥B1B2∥ ≤ ∥B1∥∥B2∥. From what we just proved, we get

(1 − ϵ′′)Q ⊂ F ′(Q) ⊂ (1 + ϵ′′)Q

with ϵ′′ = 2
√
nϵ ∥A−1∥. Applying A on the left we find

(1 − ϵ′′)AQ ⊂ F (Q) ⊂ (1 + ϵ′′)AQ,

as required. □

Lemma 9.13. Suppose that ∥DF (x) − A∥ < ϵ for some 0 < ϵ < ∥A∥/2. Then there exists a C

depending only on dimension n such that

| detDF (x) − detA| < Cϵ ∥A∥n−1.
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Proof: Suppose that DF and A differed only in the first row. Then we could expand the determi-
nant along the first row and find that

detDF − detA =
n∑

j=1

((DF )1j −A1j)pj(A)

where pj(A) is a polynomial of degree n−1 in the entries ofA from rows 2 . . .n. This immediately
gives the estimate, since |pj(A)| ≤ C∥A∥n−1. In general, we can let Aj be the matrix with the first
j rows from DF and the remaining rows from A. Apply the estimate above for detAj − detAj−1,
and use the fact that ∥Aj ∥ ≤ ∥A∥ + ϵ ≤ 2∥A∥. □

Finally we prove the theorem. Since DF is continuous on the compact set R, it is uniformly
continuous. Therefore, there exists δ such that ∥DFx −DFy ∥ < ϵ whenever |x −y | < δ . Moreover,
since both DF and D(F−1) are continuous, there are bounds

∥DFx ∥ ≤ M1, ∥D(F−1)F(x)∥ ≤ M−1, x ∈ R.

Choose a decomposition of R into a finite number of disjoint rectangles Qi such that the longest
side is at most twice the shortest side, and such that the diameter ofQi is less than δ . Let ci be the
centre of Qi , and let Ai = DFci . Then on each Qi we have, by Proposition 9.11 and Lemma 9.12,
with ϵ′ = 2

√
nM−1ϵ ,

(1 − ϵ′)n | detAi |λ(Qi) ≤ λ(F (Qi)) ≤ (1 + ϵ′)n | detAi |λ(Qi).

Now define di = λ(F (Qi))/λ(Qi). Then

(1 − ϵ′)n | detAi | ≤ di ≤ (1 + ϵ′)n | detAi |.

Now let xi be any point in Qi . Using Lemma 9.13, we have

(1 − ϵ′)n
(
| detDFxi | −CϵMn−1

1

)
≤ di

≤ (1 + ϵ′)n
(
| detDFxi | +CϵMn−1

1

)
.

(9.3)

Now for ϵ = 2−n we choose a decomposition Qn
i as above. Define the function дn to be equal to

di = dni on each Qn
i as above. By construction, we have

∫

R
дndλ = λ(F (R)),
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since F (R) is equal to the disjoint union of the F (Qn
i ). On the other hand, (9.3) shows that дn is

uniformly bounded and converges pointwise to | detDF |. The DCT shows that

lim
n

∫

R
дndλ =

∫

R
| detDFx |dλ.

Therefore,
dλ(F (R)) =

∫

R
| detDFx |dλ.

Thus, Lebesgue measure dλ and the pushforward F (| detDF |dλ) agree on F (R), and therefore on
F (R′) for any subrectangle R′ ⊂ R. Since any open set O in R is a countable union of rectangles,
the same is true for F (O) for all open O ⊂ R. Since F is assumed to be a diffeomorphism, F (O)

runs over all open sets in F (R). Now observe that the family of sets for which the two measures
agree forms a σ -algebra, so theymust agree on the σ -algebra generated by open sets, i.e. the Borel
sets. Moreover, it is not hard to see that the pushforward of a set of measure zero has measure
zero (this is true for all Lipschitz F ), so the two measures agree on all sets which differ from a
Borel set by a measure zero set, i.e. all Lebesgue measurable sets.

It follows that the pushforward of the measure | detDFx |dλ is dλ, as claimed.

9.4 The Lebesgue-Stieltjes integral

The Lebesgue-Stieltjes integral gives a meaning to the expression
∫ b

a
д(x)dF (x)

where F is an non-decreasing function. Roughly, this is supposed to be the limit of expressions
of the form

n∑

i=1

д(ti)(F (ti) − F (ti−1)), a = t0 < t1 < · · · < tn = b .

Let us say that an non-decreasing function F (x) is normalized if it is right-continuous: that is,
that F (x) = limy↓x F (y) for all x . Any non-decreasing function can be normalized by changing
its values on a countable set of points.

Theorem 9.14. Let F be a non-decreasing, normalized function on R. Then there is a unique Borel
measure µ, often denoted dF , such that µ((a,b]) = F (b) − F (a) for all a < b.
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• If F is C1 then the measure µ is given by F ′(x)dx by the Fundamental Theorem of Calculus.
Before embarking on the proof, consider a simple example: suppose F (x) = 2x . Then dF =

2dλ. On the other hand, the pushforward F (dλ) is equal to λ/2. It seems that what we are looking
at here is a sort of ‘inverse’ to the pushforward operation. And indeed, we can construct µ as a
pushforward to a sort of inverse function to F . Of course, in general F will not have an inverse!
(since it need be neither one-to-one nor onto). However, we can use the order on R to define a
sort of generalized inverse.

Proof: Let
G(y) = inf{x | F (x) > y}.

Since F is nondecreasing, G is well defined at least on the interval between limx→−∞ F (x) and
limx→+∞ F (x), and it is nondecreasing there. It is not hard to see that if F is continuous then G

is indeed the inverse to F .
Now consider the measure ν = Gλ. Let a < b be real numbers. What is ν((a,b])? By

definition, it is the Lebesgue measure of the set

S = {y | G(y) ∈ (a,b]}.

This set is {
y | inf{x | F (x) > y} ∈ (a,b]

}
.

Saying that inf{x | F (x) > y} ∈ (a,b] is a pair of conditions, so we can write S = S1 ∩ S2,
where

S1 =
{
y : inf{x : F (x) > y} > a

}

=
{
y : ∀x ≤ a, F (x) ≤ y

}

and

S2 =
{
y : inf{x : F (x) > y} ≤ b

}

=
{
y : ∀ϵ > 0,∃x < b + ϵ so that F (x) > y

}
.

Now we make four observations:
1. if y > F (a), then y > F (x) for all x ≤ a, so y ∈ S1,
2. conversely, if y ∈ S1, y ≥ F (x) for all x ≤ a, and in particular y ≥ F (a),
3. if y < F (b), we can take x = b in the condition defining S2 and see y ∈ S2, and
4. conversely, if y ∈ S2, y < F (x) for infinitely many x approaching b from above, so by right

continuity of F , y ≤ F (b).
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Putting these, together, we see

(F (a),∞) ⊂ S1 ⊂ [F (a),∞)

and

(−∞, F (b)) ⊂ S2 ⊂ (−∞, F (b)]

so

(F (a), F (b)) ⊂ S ⊂ [F (a), F (b)].

We have verified λ(S) = F (b) − F (a). Thus ν has the required property. The proof of unique-
ness follows standard lines. □

These sorts of measures turn up in the spectral theorem for bounded (non-compact) self-
adjoint operators on Hilbert space. This is phrased in terms of a spectral resolution on H ,
i.e. a family of orthogonal projection operators E(x), for x ∈ R, such that

1. E(x) is nondecreasing in the sense that the range of E(x) is contained in the range of E(y)

if x ≤ y;
2. E(x) is right continuous in the sense that limy↓x E(y)f = E(x)f for all f ∈ H ;
3. There exists an interval [a,b] such that E(x) = 0 if x < a and E(x) = Id if x > b.
Then, for all f ,д ∈ H , the function (E(x)f ,д) is nondecreasing and right continuous.
The spectral theorem for a bounded self-adjoint operatorT says there is a spectral resolution

E(x) s.t.
T =

∫

R
x dE(x)

in the sense that
(T f ,д) =

∫

R
x d(E(x)f ,д)

as a Lebesgue-Stieltjes integral.
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