11 Radon-Nikodym derivatives

11.1 Signed measures

Let (X, M) be a measurable space. A signed measure is a map v from M to (—oo, oo| with the

property that if E1, Eo, ... are disjoint elements of M, then

v(UE) = > v(E).

=1

Notice that this implies that if v(U;E;) < oo, then the sum on the RHS is absolutely convergent, for
otherwise it would not be independent of the ordering of the E;. Sometimes we refer to (unsigned)
measures as positive measures to make the distinction clear.

An example of a signed measure is

() = [ fn

where (X, M, p1) is a measure space and f is a fixed real-valued function such that f_, the negative
part of f, is integrable. (This ensures that v can never take the value —co, which is not allowed.)
In fact, we shall soon prove that this is the only possibility.

Given a signed measure v, we define the total variation |v| : M — R as follows:
IVI(E) = supz lv(E))l,
j=1

where we sup over all ways of decomposing E into a countable disjoint union of measurable sets
E;.
j

Proposition 11.1. The total variation |v| is a positive measure satisfying
v < v

Proof: We need to show that
VI(E) < > IVI(E;) and [vI(E) > ) IVI(E))
j=1 j=1

whenever E is written as a countable disjoint union of measurable sets E;.



To prove >, we choose numbers a; < |v|(E;). Then, we can find a partition E; = U;F;; into

measurable sets such that

Then U; jF; ; is a partition of E, so we get
Zaj < Z lv(Fij)l < IVI(E).
J Lj

Taking the sup over all possible «; proves >.

To prove <, we take a partition of E into measurable sets F. Then we have

DoEN = )| D v(F N Ey)
k k J

< D W(ENE < Y IVIE).
k.j J

Since this is true for each way of partitioning E, we find that
VI(E) < )" IVI(E))
J
as required.
The statement v < |v| is obvious. O

We can then write any signed measure as the difference of two positive measures, by writing

v+lvl  v—=1[v[
2 2

Vi +v-.

We say that v is o-finite if |v| is, and then v, and v_ automatically are as well.
Notice that the finite signed measures on a measurable space (X, M) form a vector space,
denoted M(X).

Theorem 11.2. M(X) is a complete normed space under the norm

Vi) = VIX).

Proof: Itis straightforward to show that || - ||(x) is @ norm. Suppose that v; is a Cauchy sequence
in M(X). Then for each E € M, |vy(E) — viy(E)| = 0 as m,n — oo, so lim,, v,,(E) exists for each E.
Define v(E) to be lim, v,(E). We need to show that v is a finite signed measure.

To show countable additivity, suppose that E = U;E; is a disjoint union of measurable sets.



Lemma 11.3. Fore > 0 there exists an N(€) so

(o)

Z |vn(E;) = vin(E;)| < € forn,m > N(e).

i=1
Proof: We write X = E° LI | |; E;, and use

Zlvn _Vm )Iﬁlvn( _Vm Ec |+Z|Vn _Vm )l

(as we are adding a non-negative quantity), and then from the definition of the total variation

norm, this is
< lva = vmll.
As v; is a Cauchy sequence with respect to the total variation norm, this gives the result. O

Certainly then, for every integer M,

Zlvn — Vm(E;)| < € for n,m > N(e).

Taking m to infinity, we find that

M

Z [Va(E;) — v(E;)| < e forn > N(e).

i=1

Since this is true for all M, we get

Zlvn —v(E;)| < eforn > N(e). (11.1)

Now we can compute

[V(E) = > v(E)| = lim |va(E) = )" v(E)

i i

D (vn(Es) = v(E)

i

= lim
n

= lim sup
n

D ((E:) = v(E)

i

< limsu |[vn(E;) — v(E;)|
; PZ n(Ei) (Ei)

<e



by (L1.1). Since this is true for all €, we see that v(E) = 3; v(E;), so v is countably additive, and
hence a signed measure. Now () with E; a partition of X shows that [|v, — v|lyx) — 0. This
shows that v is a finite measure and that v, — v under the total variation norm, completing the

proof. m]

11.2 Absolute continuity

Definition 11.4.
1. We say that a signed measure i is supported on a set A if y(E) = p(E N A) for all E € M.
2. Two signed measures y and v are mutually singular if they are supported on disjoint subsets.
This is denoted p L v.
3. If v is a signed measure and u a positive measure, we say that v is absolutely continuous
w.r.t. pif
u(E)=0 = v(E) =0.

If |v| is a finite measure then this last condition is equivalent to the assertion that for each
€ > 0 there exists § > 0 such that

U(E) <8 = |V|(E) <,

while in general this is a strictly stronger assertion.
Example. Lebesgue measure, delta measures, and E — fE f onR"
Exercise. Give an example where |v| is not finite, and the first assertion does not imply the

second.

Theorem 11.5 (Radon-Nikodym).
Let y1 be a o-finite positive measure on the measurable space (X, M) and v a o-finite signed measure.
Then we can write v = v, + vs where v, is absolutely continuous w.r.t. u, and vs and i are mutually

singular. Moreover, there exists an extended u-integrable function f such that

w(®) = [ fin

e A function is extended p-integrable if its negative part is integrable.

Proof: We first prove when p and v are both positive and finite measures. Once we have done

that, the general case is then not difficult.



We use Hilbert space ideas. Consider the Hilbert space L?(X, p) where p = i + v. Consider
the map

2o 2y o) = [ yav

This is a bounded linear functional, since

()] < f Yldv < f Wldp < p(X)2 02

using Cauchy-Schwarz. Therefore [ is inner product with some element g of L?(X, p):

ftﬁd\/:fl//gdpforalll/JEL2(X,p). (11.2)

For any measurable set E, with p(E) > 0, set / = 1g. Then we find that

V(E):flEdv:flEgdp,

0< flggdp < p(E),

which implies that g < 1 a.e. w.r.t. p. By changing g on a set of p-measure zero, we can assume

SO

that g < 1 everywhere.
Now we define A to be the set where g < 1 and B to be the set where g = 1. Putting ¢ = 15,
we find that

v(B):flgdv:legdp:ledp:V(B)—i-u(B).

Therefore, (B) = 0. Since p is a positive measure, this means that y is supported in B¢ = A. So

define
vo(E) =v(ENA), v(E)=v(ENB).

We have just shown that v; and p are mutually singular. Now we show that v, is absolutely
continuous w.r.t. p.
First we reformulate Equation ([11.9) as

[va-gar= [ yod

It is tempting to try ¢y = (1 — ¢)~%, which would then give

v = [av= [(1-9 1 =gdv= [(1-9)ga
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and the desired conclusion.
However, this is not allowed since (1 — g)~' ¢ L?(X, p) necessarily. Instead, we approximate,
setting
y=(01+g+g +...9") e

which is bounded and therefore in L2. We obtain

ENA Ena- 1—g

Since g < 1 on A, 1 — g"*1 1 1 pointwise, so by MCT we get

va(E):v(EﬂA):f dv:f 7
ENA Eal—g

This shows that v, is absolutely continuous and we may take f = g(1 — ¢g)~!, which (by putting
E = X) the above equation shows is integrable w.r.t. y.

To prove for o-finite, positive measures p, v, we write X as the disjoint union of a countable
family E; of sets of finite measure. Let y;, v; be the restrictions of y1, v to E;. Then we can decom-
pose v; as Vj, + Vjs as above. Setting v, = };vj, and v; = }; vjs we satisfy the conditions of
the theorem. To treat the case of a signed measure, we treat the positive and negative parts of v

separately. O
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