INTERACTIVE THEOREM PROVING, ASSIGNMENT 1

Instructions:

- Submit your work as a zip file, containing files u5228111/Q1.lean, ..., u5228111/Q5.lean.
- Each file must compile without errors (but Sorry is okay if you get stuck and want to keep going).
- Please include comments explaining clearly what you are doing, wherever there is the slightest doubt. Don't expect sympathetic marking if you mess something up, and haven't written a comment explaining what you intended!
- If a question asks for, or deserves, extended written comments, feel free to include a pdf as well.
- You may freely import anything from mathlib, except where noted.
(1) Define the natural numbers as an inductive type, and prove at least one of
(a) $\mathrm{a} *(\mathrm{~b}+\mathrm{c})=\mathrm{a} * \mathrm{~b}+\mathrm{a} * \mathrm{c}$
(b) $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$
(c) $(\mathrm{a} * \mathrm{~b}) \star \mathrm{c}=\mathrm{a} *(\mathrm{~b} * \mathrm{c})$
(2) Let's formalise the statements (but not the proofs!) of some famous theorems or conjectures. Choose one of the following, and define arop corresponding to the statement of the theorem. For example, if you were formalising the statement of Fermat's last theorem, you would write

```
theorem statement_of_fermats_last_theorem : Prop :=
\forall n \geq 3, \forall a b c \geq 1, a ^ n + b ^ n f c ^ n
```

(a) The Green-Tao theorem, that there are arbitrarily long arithmetic progressions of primes.
(b) Apéry's theorem, that $\zeta(3)$ is irrational.
(c) The $a b c$ conjecture.

- You'll need to define the radical, and may prefer to discover and explain informally an equivalence with a version that does not mention real numbers.
(d) The Riemann hypothesis.
- This one would be seriously difficult, if you start to define the Riemann ζ function; I'd be happy if you formalised an elementary statement equivalent to RH, and gave a citation to the literature for the equivalence.
(3) (a) (Optional) Define your own list type (otherwise, below, use the built-in one).
(b) Give sensible definitions of

```
def concat {a : Type} : list (list a) > list a := ...
def len {a : Type} : list a }->\mathbb{N}:=..
```

(c) Show that the concatenation of a nonempty list of nonempty lists is nonempty. (Hint: Using the len function you just defined may not be the best way to formalise 'non-empty'; can you define an inductive predicate?)
(4) Define the binomial coefficients $\binom{n}{m}$, and prove $\sum_{m=0}^{n}\binom{n}{m}=2^{n}$.

- You'll want to use finset.sum fromalgebra/big_operators.lean. (This one may be awkward at first: I'll provide some hints later.)

