
INTERACTIVE THEOREM PROVING, ASSIGNMENT 1

Instructions:
• Submit your work as a zip file, containing files u5228111/Q1.lean, …, u5228111/Q5.lean.
• Each file must compile without errors (but sorry is okay if you get stuck and want to keep going).
• Please include comments explaining clearly what you are doing, wherever there is the slightest doubt. Don’t

expect sympathetic marking if you mess something up, and haven’t written a comment explaining what you
intended!

• If a question asks for, or deserves, extended written comments, feel free to include a pdf as well.
• You may freely import anything from mathlib, except where noted.

(1) Define the natural numbers as an inductive type, and prove at least one of
(a) a * (b + c) = a * b + a * c

(b) a * b = b * a
(c) (a * b) * c = a * (b * c)

(2) Let’s formalise the statements (but not the proofs!) of some famous theorems or conjectures. Choose one of
the following, and define a Prop corresponding to the statement of the theorem. For example, if you were
formalising the statement of Fermat’s last theorem, you would write
theorem statement_of_fermats_last_theorem : Prop :=
∀ n ≥ 3, ∀ a b c ≥ 1, a ^ n + b ^ n ≠ c ^ n

(a) The Green-Tao theorem, that there are arbitrarily long arithmetic progressions of primes.
(b) Apéry’s theorem, that ζ(3) is irrational.
(c) The abc conjecture.

• You’ll need to define the radical, and may prefer to discover and explain informally an equivalence
with a version that does not mention real numbers.

(d) The Riemann hypothesis.
• This one would be seriously difficult, if you start to define the Riemann ζ function; I’d be happy

if you formalised an elementary statement equivalent to RH, and gave a citation to the literature
for the equivalence.

(3) (a) (Optional) Define your own list type (otherwise, below, use the built-in one).
(b) Give sensible definitions of

def concat {α : Type} : list (list α) → list α := ...
def len {α : Type} : list α → ℕ := ...

(c) Show that the concatenation of a nonempty list of nonempty lists is nonempty. (Hint: Using the len
function you just defined may not be the best way to formalise ‘non-empty’; can you define an inductive
predicate?)

(4) Define the binomial coefficients
(
n
m

)
, and prove

∑n
m=0

(
n
m

)
= 2n.

• You’ll want to use finset.sum from algebra/big_operators.lean . (This one may be awk-
ward at first: I’ll provide some hints later.)

1


