pnas/pnas.tex
author Scott Morrison <scott@tqft.net>
Mon, 22 Nov 2010 13:40:40 -0800
changeset 661 6345c3679795
parent 660 2138fbf11ef8
child 662 57bd9fab3827
permissions -rw-r--r--
more proofreading changes
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     1
%% PNAStmpl.tex
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     2
%% Template file to use for PNAS articles prepared in LaTeX
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     3
%% Version: Apr 14, 2008
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     4
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     5
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     6
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     7
%% BASIC CLASS FILE 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     8
%% PNAStwo for two column articles is called by default.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
     9
%% Uncomment PNASone for single column articles. One column class
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    10
%% and style files are available upon request from pnas@nas.edu.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    11
%% (uncomment means get rid of the '%' in front of the command)
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    12
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    13
%\documentclass{pnasone}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    14
\documentclass{pnastwo}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    15
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    16
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    17
%% Changing position of text on physical page:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    18
%% Since not all printers position
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    19
%% the printed page in the same place on the physical page,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    20
%% you can change the position yourself here, if you need to:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    21
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    22
% \advance\voffset -.5in % Minus dimension will raise the printed page on the 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    23
                         %  physical page; positive dimension will lower it.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    24
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    25
%% You may set the dimension to the size that you need.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    26
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    27
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    28
%% OPTIONAL GRAPHICS STYLE FILE
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    29
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    30
%% Requires graphics style file (graphicx.sty), used for inserting
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    31
%% .eps files into LaTeX articles.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    32
%% Note that inclusion of .eps files is for your reference only;
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    33
%% when submitting to PNAS please submit figures separately.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    34
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    35
%% Type into the square brackets the name of the driver program 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    36
%% that you are using. If you don't know, try dvips, which is the
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    37
%% most common PC driver, or textures for the Mac. These are the options:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    38
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    39
% [dvips], [xdvi], [dvipdf], [dvipdfm], [dvipdfmx], [pdftex], [dvipsone],
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    40
% [dviwindo], [emtex], [dviwin], [pctexps], [pctexwin], [pctexhp], [pctex32],
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    41
% [truetex], [tcidvi], [vtex], [oztex], [textures], [xetex]
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    42
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    43
%\usepackage[dvips]{graphicx}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    44
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    45
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    46
%% OPTIONAL POSTSCRIPT FONT FILES
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    47
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    48
%% PostScript font files: You may need to edit the PNASoneF.sty
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    49
%% or PNAStwoF.sty file to make the font names match those on your system. 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    50
%% Alternatively, you can leave the font style file commands commented out
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    51
%% and typeset your article using the default Computer Modern 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    52
%% fonts (recommended). If accepted, your article will be typeset
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    53
%% at PNAS using PostScript fonts.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    54
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    55
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    56
% Choose PNASoneF for one column; PNAStwoF for two column:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    57
%\usepackage{PNASoneF}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    58
%\usepackage{PNAStwoF}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    59
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    60
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    61
%% ADDITIONAL OPTIONAL STYLE FILES
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    62
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    63
%% The AMS math files are commonly used to gain access to useful features
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    64
%% like extended math fonts and math commands.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    65
571
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    66
\usepackage{amssymb,amsfonts,amsmath,amsthm}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    67
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    68
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    69
%% OPTIONAL MACRO FILES
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    70
%% Insert self-defined macros here.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    71
%% \newcommand definitions are recommended; \def definitions are supported
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    72
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    73
%\newcommand{\mfrac}[2]{\frac{\displaystyle #1}{\displaystyle #2}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    74
%\def\s{\sigma}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    75
571
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    76
\input{preamble}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    77
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    78
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    79
%% Don't type in anything in the following section:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    80
%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    81
%% For PNAS Only:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    82
\contributor{Submitted to Proceedings
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    83
of the National Academy of Sciences of the United States of America}
571
f958e0ea62f8 compilable PNAS file\! The blob intro typesets (poorly) onto 3 2-column pages
Scott Morrison <scott@tqft.net>
parents: 566
diff changeset
    84
%\url{www.pnas.org/cgi/doi/10.1073/pnas.0709640104}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    85
\copyrightyear{2008}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    86
\issuedate{Issue Date}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    87
\volume{Volume}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    88
\issuenumber{Issue Number}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    89
%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    90
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    91
\begin{document}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    92
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    93
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    94
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    95
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    96
%% For titles, only capitalize the first letter
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    97
%% \title{Almost sharp fronts for the surface quasi-geostrophic equation}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
    98
653
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
    99
\title{Higher categories, colimits, and the blob complex}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   100
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   101
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   102
%% Enter authors via the \author command.  
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   103
%% Use \affil to define affiliations.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   104
%% (Leave no spaces between author name and \affil command)
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   105
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   106
%% Note that the \thanks{} command has been disabled in favor of
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   107
%% a generic, reserved space for PNAS publication footnotes.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   108
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   109
%% \author{<author name>
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   110
%% \affil{<number>}{<Institution>}} One number for each institution.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   111
%% The same number should be used for authors that
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   112
%% are affiliated with the same institution, after the first time
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   113
%% only the number is needed, ie, \affil{number}{text}, \affil{number}{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   114
%% Then, before last author ...
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   115
%% \and
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   116
%% \author{<author name>
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   117
%% \affil{<number>}{}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   118
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   119
%% For example, assuming Garcia and Sonnery are both affiliated with
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   120
%% Universidad de Murcia:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   121
%% \author{Roberta Graff\affil{1}{University of Cambridge, Cambridge,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   122
%% United Kingdom},
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   123
%% Javier de Ruiz Garcia\affil{2}{Universidad de Murcia, Bioquimica y Biologia
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   124
%% Molecular, Murcia, Spain}, \and Franklin Sonnery\affil{2}{}}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   125
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   126
\author{Scott Morrison\affil{1}{Miller Institute for Basic Research, UC Berkeley, CA 94704, USA} 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   127
\and Kevin Walker\affil{2}{Microsoft Station Q, 2243 CNSI Building, UC Santa Barbara, CA 93106, USA}}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   128
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   129
\contributor{Submitted to Proceedings of the National Academy of Sciences
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   130
of the United States of America}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   131
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   132
%% The \maketitle command is necessary to build the title page.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   133
\maketitle
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   134
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   135
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   136
\begin{article}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   137
650
b17f1f07cba2 first cut of an abstract
Scott Morrison <scott@tqft.net>
parents: 649
diff changeset
   138
\begin{abstract}
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   139
We explain the need for new axioms for topological quantum field theories that include ideas from derived 
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   140
categories and homotopy theory. We summarize our axioms for higher categories, and describe the ``blob complex". 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   141
Fixing an $n$-category $\cC$, the blob complex associates a chain complex $\bc_*(W;\cC)$ to any $n$-manifold $W$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   142
The $0$-th homology of this chain complex recovers the usual TQFT invariants of $W$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   143
The higher homology groups should be viewed as generalizations of Hochschild homology. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   144
The blob complex has a very natural definition in terms of homotopy colimits along decompositions of the manifold $W$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   145
We outline the important properties of the blob complex, and sketch the proof of a generalization of 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   146
Deligne's conjecture on Hochschild cohomology and the little discs operad to higher dimensions.
650
b17f1f07cba2 first cut of an abstract
Scott Morrison <scott@tqft.net>
parents: 649
diff changeset
   147
\end{abstract}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   148
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   149
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   150
%% When adding keywords, separate each term with a straight line: |
578
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   151
\keywords{n-categories | topological quantum field theory | hochschild homology}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   152
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   153
%% Optional for entering abbreviations, separate the abbreviation from
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   154
%% its definition with a comma, separate each pair with a semicolon:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   155
%% for example:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   156
%% \abbreviations{SAM, self-assembled monolayer; OTS,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   157
%% octadecyltrichlorosilane}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   158
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   159
% \abbreviations{TQFT, topological quantum field theory}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   160
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   161
%% The first letter of the article should be drop cap: \dropcap{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   162
%\dropcap{I}n this article we study the evolution of ''almost-sharp'' fronts
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   163
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   164
%% Enter the text of your article beginning here and ending before
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   165
%% \begin{acknowledgements}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   166
%% Section head commands for your reference:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   167
%% \section{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   168
%% \subsection{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   169
%% \subsubsection{}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   170
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   171
\dropcap{T}he aim of this paper is to describe a derived category analogue of topological quantum field theories.
630
e0093da0d39f silly commit to move stuff from office to home
Kevin Walker <kevin@canyon23.net>
parents: 627
diff changeset
   172
e0093da0d39f silly commit to move stuff from office to home
Kevin Walker <kevin@canyon23.net>
parents: 627
diff changeset
   173
For our purposes, an $n{+}1$-dimensional TQFT is a locally defined system of
653
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   174
invariants of manifolds of dimensions 0 through $n{+}1$. In particular,
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   175
the TQFT invariant $A(Y)$ of a closed $k$-manifold $Y$ is a linear $(n{-}k)$-category.
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   176
If $Y$ has boundary then $A(Y)$ is a collection of $(n{-}k)$-categories which afford
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   177
a representation of the $(n{-}k{+}1)$-category $A(\bd Y)$.
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   178
(See \cite{1009.5025} and \cite{kw:tqft};
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   179
for a more homotopy-theoretic point of view see \cite{0905.0465}.)
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   180
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   181
We now comment on some particular values of $k$ above.
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   182
A linear 0-category is a vector space, and a representation
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   183
of a vector space is an element of the dual space.
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   184
Thus a TQFT assigns to each closed $n$-manifold $Y$ a vector space $A(Y)$,
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   185
and to each $(n{+}1)$-manifold $W$ an element of $A(\bd W)^*$.
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   186
For the remainder of this paper we will in fact be interested in so-called $(n{+}\epsilon)$-dimensional
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   187
TQFTs, which are slightly weaker structures in that they assign 
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   188
invariants to mapping cylinders of homeomorphisms between $n$-manifolds, but not to general $(n{+}1)$-manifolds.
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   189
660
2138fbf11ef8 minor, on enrichment
Scott Morrison <scott@tqft.net>
parents: 659
diff changeset
   190
When $k=n{-}1$ we have a linear 1-category $A(S)$ for each $(n{-}1)$-manifold $S$,
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   191
and a representation of $A(\bd Y)$ for each $n$-manifold $Y$.
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   192
The TQFT gluing rule in dimension $n$ states that
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   193
$A(Y_1\cup_S Y_2) \cong A(Y_1) \ot_{A(S)} A(Y_2)$,
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   194
where $Y_1$ and $Y_2$ are $n$-manifolds with common boundary $S$.
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   195
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   196
When $k=0$ we have an $n$-category $A(pt)$.
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   197
This can be thought of as the local part of the TQFT, and the full TQFT can be reconstructed from $A(pt)$
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   198
via colimits (see below).
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   199
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   200
We call a TQFT semisimple if $A(S)$ is a semisimple 1-category for all $(n{-}1)$-manifolds $S$
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   201
and $A(Y)$ is a finite-dimensional vector space for all $n$-manifolds $Y$.
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   202
Examples of semisimple TQFTs include Witten-Reshetikhin-Turaev theories, 
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   203
Turaev-Viro theories, and Dijkgraaf-Witten theories.
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   204
These can all be given satisfactory accounts in the framework outlined above.
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   205
(The WRT invariants need to be reinterpreted as $3{+}1$-dimensional theories with only a weak 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   206
dependence on interiors in order to be
637
c1cf892a4ab7 minor changes to rewritten intro
Scott Morrison <scott@tqft.net>
parents: 636
diff changeset
   207
extended all the way down to dimension 0.)
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   208
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   209
For other non-semisimple TQFT-like invariants, however, the above framework seems to be inadequate.
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   210
For example, the gluing rule for 3-manifolds in Ozsv\'ath-Szab\'o/Seiberg-Witten theory
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   211
involves a tensor product over an $A_\infty$ 1-category associated to 2-manifolds \cite{1003.0598,1005.1248}.
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   212
Long exact sequences are important computational tools in these theories,
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   213
and also in Khovanov homology, but the colimit construction breaks exactness.
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   214
For these reasons and others, it is desirable to 
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   215
extend to above framework to incorporate ideas from derived categories.
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   216
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   217
One approach to such a generalization might be to simply define a
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   218
TQFT via its gluing formulas, replacing tensor products with
643
212991f176d1 citing rozansky for s2 x s1: is there actually a paper by khovanov about this?
Scott Morrison <scott@tqft.net>
parents: 642
diff changeset
   219
derived tensor products (c.f. \cite{1011.1958}).
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   220
However, it is probably difficult to prove
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   221
the invariance of such a definition, as the object associated to a manifold
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   222
will a priori depend on the explicit presentation used to apply the gluing formulas.
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   223
We instead give a manifestly invariant construction, and
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   224
deduce from it the gluing formulas based on $A_\infty$ tensor products.
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   225
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   226
This paper is organized as follows.
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   227
We first give an account of our version of $n$-categories.
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   228
According to our definition, $n$-categories are, among other things,
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   229
functorial invariants of $k$-balls, $0\le k \le n$, which behave well with respect to gluing.
644
975c807661ca minor changes in introduction
Scott Morrison <scott@tqft.net>
parents: 643
diff changeset
   230
We then show how to extend an $n$-category from balls to arbitrary $k$-manifolds,
975c807661ca minor changes in introduction
Scott Morrison <scott@tqft.net>
parents: 643
diff changeset
   231
using colimits and homotopy colimits.
975c807661ca minor changes in introduction
Scott Morrison <scott@tqft.net>
parents: 643
diff changeset
   232
This extension, which we call the blob complex, has as $0$-th homology the usual TQFT invariant.
639
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   233
(The name comes from the ``blobs" which feature prominently
11f8331ea7c4 maybe if I commit now merging will be easier?
Kevin Walker <kevin@canyon23.net>
parents: 632
diff changeset
   234
in a concrete version of the homotopy colimit.)
641
0b9636e084f9 done with intro for now
Kevin Walker <kevin@canyon23.net>
parents: 640
diff changeset
   235
We then review some basic properties of the blob complex, and finish by showing how it
0b9636e084f9 done with intro for now
Kevin Walker <kevin@canyon23.net>
parents: 640
diff changeset
   236
yields a higher categorical and higher dimensional generalization of Deligne's
0b9636e084f9 done with intro for now
Kevin Walker <kevin@canyon23.net>
parents: 640
diff changeset
   237
conjecture on Hochschild cochains and the little 2-disks operad.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   238
649
Scott Morrison <scott@tqft.net>
parents: 648
diff changeset
   239
Of course, there are currently many interesting alternative notions of $n$-category and of TQFT.
Scott Morrison <scott@tqft.net>
parents: 648
diff changeset
   240
We note that our $n$-categories are both more and less general
641
0b9636e084f9 done with intro for now
Kevin Walker <kevin@canyon23.net>
parents: 640
diff changeset
   241
than the ``fully dualizable" ones which play a prominent role in \cite{0905.0465}.
653
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   242
They are more general in that we make no duality assumptions in the top dimension $n{+}1$.
649
Scott Morrison <scott@tqft.net>
parents: 648
diff changeset
   243
They are less general in that we impose stronger duality requirements in dimensions 0 through $n$.
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   244
Thus our $n$-categories correspond to $(n{+}\epsilon)$-dimensional {\it unoriented} or {\it oriented} TQFTs, while
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   245
Lurie's (fully dualizable) $n$-categories correspond to $(n{+}1)$-dimensional {\it framed} TQFTs.
624
Kevin Walker <kevin@canyon23.net>
parents: 623
diff changeset
   246
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   247
At several points we only sketch an argument briefly; full details can be found in \cite{1009.5025}. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   248
In this paper we attempt to give a clear view of the big picture without getting 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   249
bogged down in technical details.
641
0b9636e084f9 done with intro for now
Kevin Walker <kevin@canyon23.net>
parents: 640
diff changeset
   250
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   251
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   252
\section{Definitions}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   253
\subsection{$n$-categories} \mbox{}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   254
642
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   255
In this section we give a definition of $n$-categories designed to work well with TQFTs.
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   256
The main idea is to base the definition on actual balls, rather combinatorial models of them.
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   257
This has the advantages of avoiding a proliferation of coherency axioms and building in a strong
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   258
version of duality from the start.
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   259
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   260
642
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   261
%\nn{maybe say something about goals: well-suited to TQFTs; avoid proliferation of coherency axioms;
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   262
%non-recursive (n-cats not defined n terms of (n-1)-cats; easy to show that the motivating
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   263
%examples satisfy the axioms; strong duality; both plain and infty case;
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   264
%(?) easy to see that axioms are correct, in the sense of nothing missing (need
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   265
%to say this better if we keep it)}
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   266
%
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   267
%\nn{maybe: the typical n-cat definition tries to do two things at once: (1) give a list of basic properties
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   268
%which are weak enough to include the basic examples and strong enough to support the proofs
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   269
%of the main theorems; and (2) specify a minimal set of generators and/or axioms.
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   270
%We separate these two tasks, and address only the first, which becomes much easier when not burdened by the second.
61287354218c short version of cat sect intro; longer intro desirable?
Kevin Walker <kevin@canyon23.net>
parents: 641
diff changeset
   271
%More specifically, life is easier when working with maximal, rather than minimal, collections of axioms.}
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   272
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   273
We will define two variations simultaneously,  as all but one of the axioms are identical in the two cases.
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   274
These variations are ``isotopy $n$-categories", where homeomorphisms fixing the boundary
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   275
act trivially on the sets associated to $n$-balls
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   276
(and these sets are usually vector spaces or more generally modules over a commutative ring)
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   277
and ``$A_\infty$ $n$-categories",  where there is a homotopy action of
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   278
$k$-parameter families of homeomorphisms on these sets
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   279
(which are usually chain complexes or topological spaces).
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   280
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   281
There are five basic ingredients 
615
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   282
\cite{life-of-brian} of an $n$-category definition:
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   283
$k$-morphisms (for $0\le k \le n$), domain and range, composition,
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   284
identity morphisms, and special behavior in dimension $n$ (e.g. enrichment
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   285
in some auxiliary category, or strict associativity instead of weak associativity).
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   286
We will treat each of these in turn.
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   287
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   288
To motivate our morphism axiom, consider the venerable notion of the Moore loop space
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   289
\cite[\S 2.2]{MR505692}.
581
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   290
In the standard definition of a loop space, loops are always parameterized by the unit interval $I = [0,1]$,
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   291
so composition of loops requires a reparameterization $I\cup I \cong I$, and this leads to a proliferation
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   292
of higher associativity relations.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   293
While this proliferation is manageable for 1-categories (and indeed leads to an elegant theory
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   294
of Stasheff polyhedra and $A_\infty$ categories), it becomes undesirably complex for higher categories.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   295
In a Moore loop space, we have a separate space $\Omega_r$ for each interval $[0,r]$, and a 
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   296
{\it strictly associative} composition $\Omega_r\times \Omega_s\to \Omega_{r+s}$.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   297
Thus we can have the simplicity of strict associativity in exchange for more morphisms.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   298
We wish to imitate this strategy in higher categories.
f2471d26002c some n-cat motivation
Kevin Walker <kevin@canyon23.net>
parents: 580
diff changeset
   299
Because we are mainly interested in the case of strong duality, we replace the intervals $[0,r]$ not with
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   300
a product of $k$ intervals (c.f. \cite{0909.2212}) but rather with any $k$-ball, that is, 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   301
any $k$-manifold which is homeomorphic
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   302
to the standard $k$-ball $B^k$.
583
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   303
645
4e816ca8b5e2 unoriented <=> oriented
Kevin Walker <kevin@canyon23.net>
parents: 644
diff changeset
   304
By default our balls are unoriented,
644
975c807661ca minor changes in introduction
Scott Morrison <scott@tqft.net>
parents: 643
diff changeset
   305
but it is useful at times to vary this,
645
4e816ca8b5e2 unoriented <=> oriented
Kevin Walker <kevin@canyon23.net>
parents: 644
diff changeset
   306
for example by considering oriented or Spin balls.
644
975c807661ca minor changes in introduction
Scott Morrison <scott@tqft.net>
parents: 643
diff changeset
   307
We can also consider more exotic structures, such as balls with a map to some target space,
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   308
or equipped with $m$ independent vector fields.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   309
(The latter structure would model $n$-categories with less duality than we usually assume.)
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   310
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   311
\begin{axiom}[Morphisms]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   312
\label{axiom:morphisms}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   313
For each $0 \le k \le n$, we have a functor $\cC_k$ from 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   314
the category of $k$-balls and 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   315
homeomorphisms to the category of sets and bijections.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   316
\end{axiom}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   317
586
0510346848ed restore and complete the fragment
Kevin Walker <kevin@canyon23.net>
parents: 585
diff changeset
   318
Note that the functoriality in the above axiom allows us to operate via
0510346848ed restore and complete the fragment
Kevin Walker <kevin@canyon23.net>
parents: 585
diff changeset
   319
homeomorphisms which are not the identity on the boundary of the $k$-ball.
0510346848ed restore and complete the fragment
Kevin Walker <kevin@canyon23.net>
parents: 585
diff changeset
   320
The action of these homeomorphisms gives the ``strong duality" structure.
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   321
For this reason we don't subdivide the boundary of a morphism
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   322
into domain and range in the next axiom --- the duality operations can convert between domain and range.
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   323
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   324
Later we inductively define an extension of the functors $\cC_k$ to functors $\cl{\cC}_k$ 
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   325
defined on arbitrary manifolds. 
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   326
We need  these functors for $k$-spheres, for $k<n$, for the next axiom.
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   327
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   328
\begin{axiom}[Boundaries]\label{nca-boundary}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   329
For each $k$-ball $X$, we have a map of sets $\bd: \cC_k(X)\to \cl{\cC}_{k-1}(\bd X)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   330
These maps, for various $X$, comprise a natural transformation of functors.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   331
\end{axiom}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   332
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
   333
For $c\in \cl{\cC}_{k-1}(\bd X)$ we define $\cC_k(X; c) = \bd^{-1}(c)$.
587
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   334
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   335
Many of the examples we are interested in are enriched in some auxiliary category $\cS$
597
26c4d576e155 fixing typo
Kevin Walker <kevin@canyon23.net>
parents: 595
diff changeset
   336
(e.g. vector spaces or rings, or, in the $A_\infty$ case, chain complexes or topological spaces).
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   337
This means that in the top dimension $k=n$ the sets $\cC_n(X; c)$ have the structure
587
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   338
of an object of $\cS$, and all of the structure maps of the category (above and below) are
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   339
compatible with the $\cS$ structure on $\cC_n(X; c)$.
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   340
38ec3d05d0d8 enrichment; decompositions (meta)
Kevin Walker <kevin@canyon23.net>
parents: 586
diff changeset
   341
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   342
Given two hemispheres (a ``domain" and ``range") that agree on the equator, we need to be able to 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   343
assemble them into a boundary value of the entire sphere.
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   344
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   345
\begin{lem}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   346
\label{lem:domain-and-range}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   347
Let $S = B_1 \cup_E B_2$, where $S$ is a $k{-}1$-sphere $(1\le k\le n)$,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   348
$B_i$ is a $k{-}1$-ball, and $E = B_1\cap B_2$ is a $k{-}2$-sphere (Figure \ref{blah3}).
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   349
Let $\cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2)$ denote the fibered product of the 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   350
two maps $\bd: \cC(B_i)\to \cl{\cC}(E)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   351
Then we have an injective map
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   352
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   353
	\gl_E : \cC(B_1) \times_{\cl{\cC}(E)} \cC(B_2) \into \cl{\cC}(S)
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   354
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   355
which is natural with respect to the actions of homeomorphisms.
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   356
%(When $k=1$ we stipulate that $\cl{\cC}(E)$ is a point, so that the above fibered product
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   357
%becomes a normal product.)
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   358
\end{lem}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   359
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   360
If $\bdy B = S$, we denote $\bdy^{-1}(\im(\gl_E))$ by $\cC(B)_E$.
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   361
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   362
\begin{axiom}[Gluing]
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   363
\label{axiom:composition}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   364
Let $B = B_1 \cup_Y B_2$, where $B$, $B_1$ and $B_2$ are $k$-balls ($0\le k\le n$)
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   365
and $Y = B_1\cap B_2$ is a $k{-}1$-ball (Figure \ref{blah5}).
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   366
Let $E = \bd Y$, which is a $k{-}2$-sphere.
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   367
%Note that each of $B$, $B_1$ and $B_2$ has its boundary split into two $k{-}1$-balls by $E$.
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   368
We have restriction maps $\cC(B_i)_E \to \cC(Y)$.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   369
Let $\cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E$ denote the fibered product of these two maps. 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   370
We have a map
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   371
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   372
	\gl_Y : \cC(B_1)_E \times_{\cC(Y)} \cC(B_2)_E \to \cC(B)_E
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   373
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   374
which is natural with respect to the actions of homeomorphisms, and also compatible with restrictions
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   375
to the intersection of the boundaries of $B$ and $B_i$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   376
If $k < n$,
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   377
or if $k=n$ and we are in the $A_\infty$ case, 
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   378
we require that $\gl_Y$ is injective.
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   379
(For $k=n$ in the isotopy $n$-category case, see Axiom \ref{axiom:extended-isotopies}.)
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   380
\end{axiom}
582
Kevin Walker <kevin@canyon23.net>
parents: 581
diff changeset
   381
646
895b57485dfa epsilon
Scott Morrison <scott@tqft.net>
parents: 645
diff changeset
   382
\begin{axiom}[Strict associativity] \label{nca-assoc}\label{axiom:associativity}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   383
The gluing maps above are strictly associative.
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   384
Given any decomposition of a ball $B$ into smaller balls
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   385
$$\bigsqcup B_i \to B,$$ 
584
Scott Morrison <scott@tqft.net>
parents: 583
diff changeset
   386
any sequence of gluings (where all the intermediate steps are also disjoint unions of balls) yields the same result.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   387
\end{axiom}
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   388
%This axiom is only reasonable because the definition assigns a set to every ball; 
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   389
%any identifications would limit the extent to which we can demand associativity.
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   390
%%%% KW: It took me quite a while figure out what you [or I??] meant by the above, so I'm attempting a rewrite.
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   391
Note that even though our $n$-categories are ``weak" in the traditional sense, we can require
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   392
strict associativity because we have more morphisms (cf.\ discussion of Moore loops above).
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   393
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   394
For the next axiom, a \emph{pinched product} is a map locally modeled on a degeneracy map between simplices.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   395
\begin{axiom}[Product (identity) morphisms]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   396
\label{axiom:product}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   397
For each pinched product $\pi:E\to X$, with $X$ a $k$-ball and $E$ a $k{+}m$-ball ($m\ge 1$),
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   398
there is a map $\pi^*:\cC(X)\to \cC(E)$.
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   399
These maps must be
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   400
\begin{enumerate}
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   401
\item natural with respect to maps of pinched products,
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   402
\item functorial with respect to composition of pinched products, 
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   403
\item compatible with gluing and restriction of pinched products.
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   404
\end{enumerate}
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   405
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   406
%%% begin noop %%%
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   407
% this was the original list of conditions, which I've replaced with the much terser list above -S
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   408
\noop{
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   409
These maps must satisfy the following conditions.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   410
\begin{enumerate}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   411
\item
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   412
If $\pi:E\to X$ and $\pi':E'\to X'$ are pinched products, and
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   413
if $f:X\to X'$ and $\tilde{f}:E \to E'$ are maps such that the diagram
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   414
\[ \xymatrix{
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   415
	E \ar[r]^{\tilde{f}} \ar[d]_{\pi} & E' \ar[d]^{\pi'} \\
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   416
	X \ar[r]^{f} & X'
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   417
} \]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   418
commutes, then we have 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   419
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   420
	\pi'^*\circ f = \tilde{f}\circ \pi^*.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   421
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   422
\item
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   423
Product morphisms are compatible with gluing.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   424
Let $\pi:E\to X$, $\pi_1:E_1\to X_1$, and $\pi_2:E_2\to X_2$ 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   425
be pinched products with $E = E_1\cup E_2$.
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   426
Let $a\in \cC(X)$, and let $a_i$ denote the restriction of $a$ to $X_i\subset X$.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   427
Then 
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   428
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   429
	\pi^*(a) = \pi_1^*(a_1)\bullet \pi_2^*(a_2) .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   430
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   431
\item
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   432
Product morphisms are associative.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   433
If $\pi:E\to X$ and $\rho:D\to E$ are pinched products then
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   434
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   435
	\rho^*\circ\pi^* = (\pi\circ\rho)^* .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   436
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   437
\item
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   438
Product morphisms are compatible with restriction.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   439
If we have a commutative diagram
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   440
\[ \xymatrix{
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   441
	D \ar@{^(->}[r] \ar[d]_{\rho} & E \ar[d]^{\pi} \\
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   442
	Y \ar@{^(->}[r] & X
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   443
} \]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   444
such that $\rho$ and $\pi$ are pinched products, then
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   445
\[
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   446
	\res_D\circ\pi^* = \rho^*\circ\res_Y .
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   447
\]
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   448
\end{enumerate}
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   449
} %%% end \noop %%%
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   450
\end{axiom}
604
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   451
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   452
To state the next axiom we need the notion of {\it collar maps} on $k$-morphisms.
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   453
Let $X$ be a $k$-ball and $Y\subset\bd X$ be a $(k{-}1)$-ball.
604
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   454
Let $J$ be a 1-ball.
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   455
Let $Y\times_p J$ denote $Y\times J$ pinched along $(\bd Y)\times J$.
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   456
A collar map is an instance of the composition
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   457
\[
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   458
	\cC(X) \to \cC(X\cup_Y (Y\times_p J)) \to \cC(X) ,
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   459
\]
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   460
where the first arrow is gluing with a product morphism on $Y\times_p J$ and
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   461
the second is induced by a homeomorphism from $X\cup_Y (Y\times_p J)$ to $X$ which restricts
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   462
to the identity on the boundary.
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   463
f0dff7f0f337 definition of collar maps
Kevin Walker <kevin@canyon23.net>
parents: 603
diff changeset
   464
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   465
\begin{axiom}[\textup{\textbf{[for isotopy  $n$-categories]}} Extended isotopy invariance in dimension $n$.]
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   466
\label{axiom:extended-isotopies}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   467
Let $X$ be an $n$-ball and $f: X\to X$ be a homeomorphism which restricts
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   468
to the identity on $\bd X$ and isotopic (rel boundary) to the identity.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   469
Then $f$ acts trivially on $\cC(X)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   470
In addition, collar maps act trivially on $\cC(X)$.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   471
\end{axiom}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   472
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   473
\smallskip
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   474
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   475
For $A_\infty$ $n$-categories, we replace
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   476
isotopy invariance with the requirement that families of homeomorphisms act.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   477
For the moment, assume that our $n$-morphisms are enriched over chain complexes.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   478
Let $\Homeo_\bd(X)$ denote homeomorphisms of $X$ which fix $\bd X$ and
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   479
$C_*(\Homeo_\bd(X))$ denote the singular chains on this space.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   480
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   481
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   482
\begin{axiom}[\textup{\textbf{[for $A_\infty$ $n$-categories]}} Families of homeomorphisms act in dimension $n$.]
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   483
\label{axiom:families}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   484
For each $n$-ball $X$ and each $c\in \cl{\cC}(\bd X)$ we have a map of chain complexes
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   485
\[
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   486
	C_*(\Homeo_\bd(X))\tensor \cC(X; c) \to \cC(X; c) .
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   487
\]
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   488
These action maps are required to restrict to the usual action of homeomorphisms on $C_0$, be associative up to homotopy,
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   489
and also be compatible with composition (gluing) in the sense that
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   490
a diagram like the one in Theorem \ref{thm:CH} commutes.
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   491
\end{axiom}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   492
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   493
\subsection{Example (the fundamental $n$-groupoid)} \mbox{}
601
6bfa35fb758a minor changes to cone-product polyhedra discussion
Scott Morrison <scott@tqft.net>
parents: 600
diff changeset
   494
We will define $\pi_{\le n}(T)$, the fundamental $n$-groupoid of a topological space $T$.
6bfa35fb758a minor changes to cone-product polyhedra discussion
Scott Morrison <scott@tqft.net>
parents: 600
diff changeset
   495
When $X$ is a $k$-ball with $k<n$, define $\pi_{\le n}(T)(X)$
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   496
to be the set of continuous maps from $X$ to $T$.
601
6bfa35fb758a minor changes to cone-product polyhedra discussion
Scott Morrison <scott@tqft.net>
parents: 600
diff changeset
   497
When $X$ is an $n$-ball, define $\pi_{\le n}(T)(X)$ to be homotopy classes (rel boundary) of such maps.
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   498
Define boundary restrictions and gluing in the obvious way.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   499
If $\rho:E\to X$ is a pinched product and $f:X\to T$ is a $k$-morphism,
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   500
define the product morphism $\rho^*(f)$ to be $f\circ\rho$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   501
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   502
We can also define an $A_\infty$ version $\pi_{\le n}^\infty(T)$ of the fundamental $n$-groupoid.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   503
For $X$ an $n$-ball define $\pi_{\le n}^\infty(T)(X)$ to be the space of all maps from $X$ to $T$
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   504
(if we are enriching over spaces) or the singular chains on that space (if we are enriching over chain complexes).
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   505
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   506
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   507
\subsection{Example (string diagrams)} \mbox{}
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   508
Fix a ``traditional" $n$-category $C$ with strong duality (e.g.\ a pivotal 2-category).
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   509
Let $X$ be a $k$-ball and define $\cS_C(X)$ to be the set of $C$ string diagrams drawn on $X$;
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   510
that is, certain cell complexes embedded in $X$, with the codimension-$j$ cells labeled by $j$-morphisms of $C$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   511
If $X$ is an $n$-ball, identify two such string diagrams if they evaluate to the same $n$-morphism of $C$.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   512
Boundary restrictions and gluing are again straightforward to define.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   513
Define product morphisms via product cell decompositions.
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   514
658
c56a3fe75d1e changes from proof-read, 1st installment
Kevin Walker <kevin@canyon23.net>
parents: 657
diff changeset
   515
\subsection{Example (bordism)} \mbox{}
612
871dffc348ab bordism example
Scott Morrison <scott@tqft.net>
parents: 611
diff changeset
   516
When $X$ is a $k$-ball with $k<n$, $\Bord^n(X)$ is the set of all $k$-dimensional
871dffc348ab bordism example
Scott Morrison <scott@tqft.net>
parents: 611
diff changeset
   517
submanifolds $W$ in $X\times \bbR^\infty$ which project to $X$ transversely
871dffc348ab bordism example
Scott Morrison <scott@tqft.net>
parents: 611
diff changeset
   518
to $\bd X$.
871dffc348ab bordism example
Scott Morrison <scott@tqft.net>
parents: 611
diff changeset
   519
For an $n$-ball $X$ define $\Bord^n(X)$ to be homeomorphism classes rel boundary of such $n$-dimensional submanifolds.
600
e9032f8dee24 Examples and misc.; quality of writing perhaps not so great.
Kevin Walker <kevin@canyon23.net>
parents: 599
diff changeset
   520
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   521
There is an $A_\infty$ analogue enriched in topological spaces, where at the top level we take 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   522
all such submanifolds, rather than homeomorphism classes. 
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   523
For each fixed $\bdy W \subset \bdy X \times \bbR^\infty$, we 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   524
topologize the set of submanifolds by ambient isotopy rel boundary.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   525
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   526
\subsection{The blob complex}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   527
\subsubsection{Decompositions of manifolds}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   528
646
895b57485dfa epsilon
Scott Morrison <scott@tqft.net>
parents: 645
diff changeset
   529
A \emph{ball decomposition} of a $k$-manifold $W$ is a 
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   530
sequence of gluings $M_0\to M_1\to\cdots\to M_m = W$ such that $M_0$ is a disjoint union of balls
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   531
$\du_a X_a$ and each $M_i$ is a manifold.
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   532
If $X_a$ is some component of $M_0$, its image in $W$ need not be a ball; $\bd X_a$ may have been glued to itself.
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   533
A {\it permissible decomposition} of $W$ is a map
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   534
\[
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   535
	\coprod_a X_a \to W,
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   536
\]
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   537
which can be completed to a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$.
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   538
A permissible decomposition is weaker than a ball decomposition; we forget the order in which the balls
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   539
are glued up to yield $W$, and just require that there is some non-pathological way to do this.
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   540
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   541
Given permissible decompositions $x = \{X_a\}$ and $y = \{Y_b\}$ of $W$, we say that $x$ is a refinement
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   542
of $y$, or write $x \le y$, if there is a ball decomposition $\du_a X_a = M_0\to\cdots\to M_m = W$
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   543
with $\du_b Y_b = M_i$ for some $i$.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   544
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   545
\begin{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   546
The poset $\cell(W)$ has objects the permissible decompositions of $W$, 
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   547
and a unique morphism from $x$ to $y$ if and only if $x$ is a refinement of $y$.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   548
See Figure \ref{partofJfig} for an example.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   549
\end{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   550
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   551
This poset in fact has more structure, since we can glue together permissible decompositions of 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   552
$W_1$ and $W_2$ to obtain a permissible decomposition of $W_1 \sqcup W_2$. 
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   553
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   554
An $n$-category $\cC$ determines 
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   555
a functor $\psi_{\cC;W}$ from $\cell(W)$ to the category of sets 
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   556
(possibly with additional structure if $k=n$).
653
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   557
Each $k$-ball $X$ of a decomposition $y$ of $W$ has its boundary decomposed into $k{-}1$-manifolds,
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   558
and there is a subset $\cC(X)\spl \subset \cC(X)$ of morphisms whose boundaries
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   559
are splittable along this decomposition.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   560
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   561
\begin{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   562
Define the functor $\psi_{\cC;W} : \cell(W) \to \Set$ as follows.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   563
For a decomposition $x = \bigsqcup_a X_a$ in $\cell(W)$, $\psi_{\cC;W}(x)$ is the subset
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   564
\begin{equation*}
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   565
%\label{eq:psi-C}
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   566
	\psi_{\cC;W}(x) \subset \prod_a \cC(X_a)\spl
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   567
\end{equation*}
653
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   568
where the restrictions to the various pieces of shared boundaries amongst the balls
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   569
$X_a$ all agree (this is a fibered product of all the labels of $k$-balls over the labels of $k-1$-manifolds). 
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   570
When $k=n$, the ``subset" and ``product" in the above formula should be 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   571
interpreted in the appropriate enriching category.
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   572
If $x$ is a refinement of $y$, the map $\psi_{\cC;W}(x) \to \psi_{\cC;W}(y)$ is given by the composition maps of $\cC$.
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   573
\end{defn}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   574
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   575
We will use the term ``field on $W$" to refer to a point of this functor,
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   576
that is, a permissible decomposition $x$ of $W$ together with an element of $\psi_{\cC;W}(x)$.
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
   577
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   578
632
771544392058 more intro
Kevin Walker <kevin@canyon23.net>
parents: 631
diff changeset
   579
\subsubsection{Colimits}
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   580
Recall that our definition of an $n$-category is essentially a collection of functors
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   581
defined on the categories of homeomorphisms of $k$-balls
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   582
for $k \leq n$ satisfying certain axioms. 
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   583
It is natural to hope to extend such functors to the 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   584
larger categories of all $k$-manifolds (again, with homeomorphisms). 
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   585
In fact, the axioms stated above already require such an extension to $k$-spheres for $k<n$.
638
6a7f2a6295d1 very paltry start on colimits, out of time for now
Scott Morrison <scott@tqft.net>
parents: 637
diff changeset
   586
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   587
The natural construction achieving this is a colimit along the poset of permissible decompositions.
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   588
Given an isotopy $n$-category $\cC$, 
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   589
we will denote its extension to all manifolds by $\cl{\cC}$. On a $k$-manifold $W$, with $k \leq n$, 
656
28592849a474 some more fixes in the colimit section
Scott Morrison <scott@tqft.net>
parents: 655
diff changeset
   590
this is defined to be the colimit along $\cell(W)$ of the functor $\psi_{\cC;W}$. 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   591
Note that Axioms \ref{axiom:composition} and \ref{axiom:associativity} 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   592
imply that $\cl{\cC}(X)  \iso \cC(X)$ when $X$ is a $k$-ball with $k<n$. 
660
2138fbf11ef8 minor, on enrichment
Scott Morrison <scott@tqft.net>
parents: 659
diff changeset
   593
Suppose that $\cC$ is enriched in vector spaces: this means that given boundary conditions $c \in \cl{\cC}(\bdy X)$, for $X$ an $n$-ball, 
2138fbf11ef8 minor, on enrichment
Scott Morrison <scott@tqft.net>
parents: 659
diff changeset
   594
the set $\cC(X;c)$ is a vector space. 
2138fbf11ef8 minor, on enrichment
Scott Morrison <scott@tqft.net>
parents: 659
diff changeset
   595
In this case, for $W$ an arbitrary $n$-manifold and $c \in \cl{\cC}(\bdy W)$,
2138fbf11ef8 minor, on enrichment
Scott Morrison <scott@tqft.net>
parents: 659
diff changeset
   596
the set $\cl{\cC}(W;c) = \bdy^{-1} (c)$ inherits the structure of a vector space. 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   597
These are the usual TQFT skein module invariants on $n$-manifolds.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   598
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   599
We can now give a straightforward but rather abstract definition of the blob complex of an $n$-manifold $W$
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   600
with coefficients in the $n$-category $\cC$ as the {\it homotopy} colimit along $\cell(W)$
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   601
of the functor $\psi_{\cC; W}$ described above. We write this as $\clh{\cC}(W)$.
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   602
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   603
An explicit realization of the homotopy colimit is provided by the simplices of the 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   604
functor $\psi_{\cC; W}$. That is, $$\clh{\cC}(W) = \DirectSum_{\bar{x}} \psi_{\cC; W}(x_0)[m],$$ 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   605
where $\bar{x} = x_0 \leq \cdots \leq x_m$ is a simplex in $\cell(W)$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   606
The differential acts on $(\bar{x},a)$ (here $a \in \psi_{\cC; W}(x_0)$) as
599
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   607
$$\bdy (\bar{x},a) = (\bar{x}, \bdy a) + (-1)^{\deg a} \left( (d_0 \bar{x}, g(a)) + \sum_{i=1}^m (-1)^i (d_i \bar{x}, a) \right)$$
ae1ee41f20dd various
Scott Morrison <scott@tqft.net>
parents: 598
diff changeset
   608
where $g$ is the gluing map from $x_0$ to $x_1$, and $d_i \bar{x}$ denotes the $i$-th face of the simplex $\bar{x}$.
598
20de3d710f77 writing inconclusively about homotopy colimits, but have to run
Scott Morrison <scott@tqft.net>
parents: 597
diff changeset
   609
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   610
Alternatively, we can take advantage of the product structure on $\cell(W)$ to realize the 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   611
homotopy colimit via the cone-product polyhedra in $\cell(W)$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   612
A cone-product polyhedra is obtained from a point by successively taking the cone or taking the 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   613
product with another cone-product polyhedron. Just as simplices correspond to linear directed graphs, 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   614
cone-product polyheda correspond to directed trees: taking cone adds a new root before the existing root, 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   615
and taking product identifies the roots of several trees. 
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   616
The ``local homotopy colimit" is then defined according to the same formula as above, but with $\bar{x}$ a cone-product polyhedron in $\cell(W)$. 
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   617
We further require that all (compositions of) morphisms in a directed tree are not expressible as a product.
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   618
The differential acts on $(\bar{x},a)$ both on $a$ and on $\bar{x}$, applying the appropriate gluing map to $a$ when required.
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   619
A Eilenberg-Zilber subdivision argument shows this is the same as the usual realization. 
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   620
605
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   621
%When $\cC$ is a topological $n$-category,
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   622
%the flexibility available in the construction of a homotopy colimit allows
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   623
%us to give a much more explicit description of the blob complex which we'll write as $\bc_*(W; \cC)$.
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   624
%\todo{either need to explain why this is the same, or significantly rewrite this section}
656
28592849a474 some more fixes in the colimit section
Scott Morrison <scott@tqft.net>
parents: 655
diff changeset
   625
When $\cC$ is the isotopy $n$-category based on string diagrams for a traditional
605
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   626
$n$-category $C$,
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   627
one can show \cite{1009.5025} that the above two constructions of the homotopy colimit
606
Kevin Walker <kevin@canyon23.net>
parents: 605
diff changeset
   628
are equivalent to the more concrete construction which we describe next, and which we denote $\bc_*(W; \cC)$.
Kevin Walker <kevin@canyon23.net>
parents: 605
diff changeset
   629
Roughly speaking, the generators of $\bc_k(W; \cC)$ are string diagrams on $W$ together with
605
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   630
a configuration of $k$ balls (or ``blobs") in $W$ whose interiors are pairwise disjoint or nested.
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   631
The restriction of the string diagram to innermost blobs is required to be ``null" in the sense that
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   632
it evaluates to a zero $n$-morphism of $C$.
78db9976b145 intro to more concrete \bc_* definition and misc
Kevin Walker <kevin@canyon23.net>
parents: 604
diff changeset
   633
The next few paragraphs describe this in more detail.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   634
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   635
We say a collection of balls $\{B_i\}$ in a manifold $W$ is \emph{permissible}
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   636
if there exists a permissible decomposition $M_0\to\cdots\to M_m = W$ such that
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   637
each $B_i$ appears as a connected component of one of the $M_j$. 
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   638
Note that this forces the balls to be pairwise either disjoint or nested. 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   639
Such a collection of balls cuts $W$ into pieces, the connected components of $W \setminus \bigcup \bdy B_i$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   640
These pieces need not be manifolds, but they do automatically have permissible decompositions.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   641
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   642
The $k$-blob group $\bc_k(W; \cC)$ is generated by the $k$-blob diagrams. A $k$-blob diagram consists of
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   643
\begin{itemize}
608
455106e40a61 minor, during call
Scott Morrison <scott@tqft.net>
parents: 607
diff changeset
   644
\item a permissible collection of $k$ embedded balls, and
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   645
\item for each resulting piece of $W$, a field,
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   646
\end{itemize}
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   647
such that for any innermost blob $B$, the field on $B$ goes to zero under the gluing map from $\cC$. 
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   648
We call such a field a ``null field on $B$".
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   649
608
455106e40a61 minor, during call
Scott Morrison <scott@tqft.net>
parents: 607
diff changeset
   650
The differential acts on a $k$-blob diagram by summing over ways to forget one of the $k$ blobs, with alternating signs.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   651
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   652
We now spell this out for some small values of $k$. For $k=0$, the $0$-blob group is simply fields on $W$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   653
For $k=1$, a generator consists of a field on $W$ and a ball, such that the restriction of the field to that ball is a null field. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   654
The differential simply forgets the ball. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   655
Thus we see that $H_0$ of the blob complex is the quotient of fields by fields which are null on some ball.
580
99611dfed1f3 k-blobs for small k, and blob cochains
Scott Morrison <scott@tqft.net>
parents: 579
diff changeset
   656
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   657
For $k=2$, we have a two types of generators; they each consists of a field $f$ on $W$, and two balls $B_1$ and $B_2$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   658
In the first case, the balls are disjoint, and $f$ restricted to either of the $B_i$ is a null field. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   659
In the second case, the balls are properly nested, say $B_1 \subset B_2$, and $f$ restricted to $B_1$ is null. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   660
Note that this implies that $f$ restricted to $B_2$ is also null, by the associativity of the gluing operation. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   661
This ensures that the differential is well-defined.
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   662
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   663
\section{Properties of the blob complex}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   664
\subsection{Formal properties}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   665
\label{sec:properties}
602
109ecc26c50d writing intro; just an expanded version of the existing notes, feel free to savage
Scott Morrison <scott@tqft.net>
parents: 601
diff changeset
   666
The blob complex enjoys the following list of formal properties. The first three are immediate from the definitions.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   667
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   668
\begin{property}[Functoriality]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   669
\label{property:functoriality}%
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   670
The blob complex is functorial with respect to homeomorphisms.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   671
That is, 
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   672
for a fixed $n$-category $\cC$, the association
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   673
\begin{equation*}
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   674
X \mapsto \bc_*(X; \cC)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   675
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   676
is a functor from $n$-manifolds and homeomorphisms between them to chain 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   677
complexes and isomorphisms between them.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   678
\end{property}
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   679
As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cC)$; 
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   680
this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:CH} below.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   681
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   682
\begin{property}[Disjoint union]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   683
\label{property:disjoint-union}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   684
The blob complex of a disjoint union is naturally isomorphic to the tensor product of the blob complexes.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   685
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   686
\bc_*(X_1 \du X_2) \iso \bc_*(X_1) \tensor \bc_*(X_2)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   687
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   688
\end{property}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   689
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   690
If an $n$-manifold $X$ contains $Y \sqcup Y^\text{op}$ (we allow $Y = \eset$) as a codimension $0$ submanifold of its boundary, 
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   691
write $X \bigcup_{Y}\selfarrow$ for the manifold obtained by gluing together $Y$ and $Y^\text{op}$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   692
\begin{property}[Gluing map]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   693
\label{property:gluing-map}%
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   694
%If $X_1$ and $X_2$ are $n$-manifolds, with $Y$ a codimension $0$-submanifold of $\bdy X_1$, and $Y^{\text{op}}$ a codimension $0$-submanifold of $\bdy X_2$, there is a chain map
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   695
%\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   696
%\gl_Y: \bc_*(X_1) \tensor \bc_*(X_2) \to \bc_*(X_1 \cup_Y X_2).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   697
%\end{equation*}
607
6f0ad8c4f8e2 minor, during call
Scott Morrison <scott@tqft.net>
parents: 606
diff changeset
   698
Given a gluing $X \to X \bigcup_{Y}\selfarrow$, there is
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   699
a map
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   700
\[
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   701
	\bc_*(X) \to \bc_*(X \bigcup_{Y}\selfarrow),
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   702
\]
574
e5ab1b074d88 minor edits and cleanup
Scott Morrison <scott@tqft.net>
parents: 573
diff changeset
   703
natural with respect to homeomorphisms, and associative with respect to iterated gluings.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   704
\end{property}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   705
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   706
\begin{property}[Contractibility]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   707
\label{property:contractibility}%
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   708
The blob complex on an $n$-ball is contractible in the sense 
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   709
that it is homotopic to its $0$-th homology, and this is just the vector space associated to the ball by the $n$-category.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   710
\begin{equation*}
649
Scott Morrison <scott@tqft.net>
parents: 648
diff changeset
   711
\xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\htpy} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   712
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   713
\end{property}
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   714
%\nn{maybe should say something about the $A_\infty$ case}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   715
583
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   716
\begin{proof}(Sketch)
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   717
For $k\ge 1$, the contracting homotopy sends a $k$-blob diagram to the $(k{+}1)$-blob diagram
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   718
obtained by adding an outer $(k{+}1)$-st blob consisting of all $B^n$.
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   719
For $k=0$ we choose a splitting $s: H_0(\bc_*(B^n)) \to \bc_0(B^n)$ and send 
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   720
$x\in \bc_0(B^n)$ to $x - s([x])$, where $[x]$ denotes the image of $x$ in $H_0(\bc_*(B^n))$.
Kevin Walker <kevin@canyon23.net>
parents: 582
diff changeset
   721
\end{proof}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   722
649
Scott Morrison <scott@tqft.net>
parents: 648
diff changeset
   723
If $\cC$ is an $A_\infty$ $n$-category then $\bc_*(B^n;\cC)$ is still homotopy equivalent to $\cC(B^n)$,
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   724
but this is no longer concentrated in degree zero.
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   725
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   726
\subsection{Specializations}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   727
\label{sec:specializations}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   728
615
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   729
The blob complex has several important special cases.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   730
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   731
\begin{thm}[Skein modules]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   732
\label{thm:skein-modules}
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   733
Suppose $\cC$ is an isotopy $n$-category.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   734
The $0$-th blob homology of $X$ is the usual 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   735
(dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
589
14b7d867e423 a few changes, maybe bad ones...
Scott Morrison <scott@tqft.net>
parents: 577
diff changeset
   736
by $\cC$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   737
\begin{equation*}
649
Scott Morrison <scott@tqft.net>
parents: 648
diff changeset
   738
H_0(\bc_*(X;\cC)) \iso \cl{\cC}(X)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   739
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   740
\end{thm}
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   741
This follows from the fact that the $0$-th homology of a homotopy colimit is the usual colimit, 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   742
or directly from the explicit description of the blob complex.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   743
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   744
\begin{thm}[Hochschild homology when $X=S^1$]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   745
\label{thm:hochschild}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   746
The blob complex for a $1$-category $\cC$ on the circle is
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   747
quasi-isomorphic to the Hochschild complex.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   748
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   749
\xymatrix{\bc_*(S^1;\cC) \ar[r]^(0.47){\iso}_(0.47){\text{qi}} & \HC_*(\cC).}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   750
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   751
\end{thm}
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   752
This theorem is established by extending the statement to bimodules as well as categories, 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   753
then verifying that the universal properties of Hochschild homology also hold for $\bc_*(S^1; -)$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   754
615
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   755
\begin{thm}[Mapping spaces]
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   756
\label{thm:map-recon}
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   757
Let $\pi^\infty_{\le n}(T)$ denote the $A_\infty$ $n$-category based on maps 
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   758
$B^n \to T$.
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   759
(The case $n=1$ is the usual $A_\infty$-category of paths in $T$.)
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   760
Then 
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   761
$$\bc_*(X; \pi^\infty_{\le n}(T)) \simeq \CM{X}{T}.$$
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   762
\end{thm}
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   763
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   764
This says that we can recover (up to homotopy) the space of maps to $T$ via blob homology from local data. 
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   765
Note that there is no restriction on the connectivity of $T$ as there is for 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   766
the corresponding result in topological chiral homology \cite[Theorem 3.8.6]{0911.0018}. 
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   767
The result is proved in \cite[\S 7.3]{1009.5025}.
615
222da6df3edc various minor, and moving mapping spaces to 'specializations'
Scott Morrison <scott@tqft.net>
parents: 614
diff changeset
   768
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   769
\subsection{Structure of the blob complex}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   770
\label{sec:structure}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   771
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   772
In the following $\CH{X} = C_*(\Homeo(X))$ is the singular chain complex of the space 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   773
of homeomorphisms of $X$, fixed on $\bdy X$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   774
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   775
\begin{thm}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   776
\label{thm:CH}\label{thm:evaluation}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   777
There is a chain map
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   778
\begin{equation*}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   779
e_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   780
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   781
such that
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   782
\begin{enumerate}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   783
\item Restricted to $CH_0(X)$ this is the action of homeomorphisms described in Property \ref{property:functoriality}. 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   784
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   785
\item For
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   786
any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   787
(using the gluing maps described in Property \ref{property:gluing-map}) commutes (up to homotopy).
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   788
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   789
\xymatrix@C+0.3cm{
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   790
     \CH{X} \tensor \bc_*(X)
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   791
        \ar[r]_{e_{X}}  \ar[d]^{\gl^{\Homeo}_Y \tensor \gl_Y}  &
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   792
            \bc_*(X) \ar[d]_{\gl_Y} \\
611
fd6e53389f2c futzing with preambles
Scott Morrison <scott@tqft.net>
parents: 608
diff changeset
   793
     \CH{X \bigcup_Y \selfarrow} \tensor \bc_*(X \bigcup_Y \selfarrow) \ar[r]_<<<<<<<{e_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow)
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   794
}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   795
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   796
\end{enumerate}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   797
609
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   798
Further, this map is associative, in the sense that the following diagram commutes (up to homotopy).
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   799
\begin{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   800
\xymatrix{
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   801
\CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor e_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{e_X} \\
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   802
\CH{X} \tensor \bc_*(X) \ar[r]^{e_X} & \bc_*(X)
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   803
}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   804
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   805
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   806
609
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   807
\begin{proof}(Sketch.)
622
dda6d3a00b09 minor tweaks in sketch proofs
Scott Morrison <scott@tqft.net>
parents: 620
diff changeset
   808
We introduce yet another homotopy equivalent version of
609
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   809
the blob complex, $\cB\cT_*(X)$.
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   810
Blob diagrams have a natural topology, which is ignored by $\bc_*(X)$.
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   811
In $\cB\cT_*(X)$ we take this topology into account, treating the blob diagrams as something
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   812
analogous to a simplicial space (but with cone-product polyhedra replacing simplices).
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   813
More specifically, a generator of $\cB\cT_k(X)$ is an $i$-parameter family of $j$-blob diagrams, with $i+j=k$. 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   814
An essential step in the proof of this equivalence is a result to the effect that a $k$-parameter 
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   815
family of homeomorphisms can be localized to at most $k$ small sets.
609
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   816
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   817
With this alternate version in hand, the theorem is straightforward.
657
9fbd8e63ab2e fixing single quotes and long lines
Kevin Walker <kevin@canyon23.net>
parents: 656
diff changeset
   818
By functoriality (Property \ref{property:functoriality}) $\Homeo(X)$ acts on the set $BD_j(X)$ of $j$-blob diagrams, and this
614
ab6bfadab93e oops, unbreaking stuff
Scott Morrison <scott@tqft.net>
parents: 613
diff changeset
   819
induces a chain map $\CH{X}\tensor C_*(BD_j(X))\to C_*(BD_j(X))$
ab6bfadab93e oops, unbreaking stuff
Scott Morrison <scott@tqft.net>
parents: 613
diff changeset
   820
and hence a map $e_X: \CH{X} \tensor \cB\cT_*(X) \to \cB\cT_*(X)$.
609
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   821
It is easy to check that $e_X$ thus defined has the desired properties.
ddf9c4daf210 proof for CH_* action
Kevin Walker <kevin@canyon23.net>
parents: 608
diff changeset
   822
\end{proof}
575
4e6f00784bd3 writing on the plane to kyoto: the blob complex as homotopy colimit and explicitly (but not why these are the same), and copy and paste of statements of axioms
Scott Morrison <scott@tqft.net>
parents: 574
diff changeset
   823
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   824
\begin{thm}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   825
\label{thm:blobs-ainfty}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   826
Let $\cC$ be  a topological $n$-category.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   827
Let $Y$ be an $n{-}k$-manifold. 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   828
There is an $A_\infty$ $k$-category $\bc_*(Y;\cC)$, defined on each $m$-ball $D$, for $0 \leq m < k$, 
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   829
to be the set $$\bc_*(Y;\cC)(D) = \cl{\cC}(Y \times D)$$ and on $k$-balls $D$ to be the set 
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   830
$$\bc_*(Y;\cC)(D) = \bc_*(Y \times D; \cC).$$ 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   831
(When $m=k$ the subsets with fixed boundary conditions form a chain complex.) 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   832
These sets have the structure of an $A_\infty$ $k$-category, with compositions coming from the gluing map in 
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   833
Property \ref{property:gluing-map} and with the action of families of homeomorphisms given in Theorem \ref{thm:evaluation}.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   834
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   835
\begin{rem}
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   836
When $Y$ is a point this produces an $A_\infty$ $n$-category from a topological $n$-category, 
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   837
which can be thought of as a free resolution.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   838
\end{rem}
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   839
This result is described in more detail as Example 6.2.8 of \cite{1009.5025}.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   840
618
Kevin Walker <kevin@canyon23.net>
parents: 617
diff changeset
   841
Fix a topological $n$-category $\cC$, which we'll now omit from notation.
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   842
From the above, associated to any $(n{-}1)$-manifold $Y$ is an $A_\infty$ category $\bc_*(Y)$.
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   843
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   844
\begin{thm}[Gluing formula]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   845
\label{thm:gluing}
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   846
\mbox{}\vspace{-0.2cm}% <-- gets the indenting right
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   847
\begin{itemize}
651
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   848
\item For any $n$-manifold $X$, with $Y$ a codimension $0$-submanifold of its boundary, 
a356cb8a83ca line breaks
Kevin Walker <kevin@canyon23.net>
parents: 650
diff changeset
   849
the blob complex of $X$ is naturally an
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   850
$A_\infty$ module for $\bc_*(Y)$.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   851
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   852
\item The blob complex of a glued manifold $X\bigcup_Y \selfarrow$ is the $A_\infty$ self-tensor product of
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   853
$\bc_*(X)$ as a $\bc_*(Y)$-bimodule:
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   854
\begin{equation*}
585
e2996d7b4e6c various, mostly working on axioms
Scott Morrison <scott@tqft.net>
parents: 584
diff changeset
   855
\bc_*(X\bigcup_Y \selfarrow) \simeq \bc_*(X) \Tensor^{A_\infty}_{\mathclap{\bc_*(Y)}} \selfarrow
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   856
\end{equation*}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   857
\end{itemize}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   858
\end{thm}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   859
618
Kevin Walker <kevin@canyon23.net>
parents: 617
diff changeset
   860
\begin{proof} (Sketch.)
620
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   861
The $A_\infty$ action of $\bc_*(Y)$ follows from the naturality of the blob complex with respect to gluing
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   862
and the $C_*(\Homeo(-))$ action of Theorem \ref{thm:evaluation}.
618
Kevin Walker <kevin@canyon23.net>
parents: 617
diff changeset
   863
620
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   864
Let $T_*$ denote the self tensor product of $\bc_*(X)$, which is a homotopy colimit.
622
dda6d3a00b09 minor tweaks in sketch proofs
Scott Morrison <scott@tqft.net>
parents: 620
diff changeset
   865
There is a tautological map from the 0-simplices of $T_*$ to $\bc_*(X\bigcup_Y \selfarrow)$,
620
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   866
and this map can be extended to a chain map on all of $T_*$ by sending the higher simplices to zero.
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   867
Constructing a homotopy inverse to this natural map involves making various choices, but one can show that the
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   868
choices form contractible subcomplexes and apply the acyclic models theorem.
618
Kevin Walker <kevin@canyon23.net>
parents: 617
diff changeset
   869
\end{proof}
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   870
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   871
We next describe the blob complex for product manifolds, in terms of the 
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   872
blob complexes for the $A_\infty$ $n$-categories constructed as above.
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   873
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   874
\begin{thm}[Product formula]
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   875
\label{thm:product}
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   876
Let $W$ be a $k$-manifold and $Y$ be an $n{-}k$ manifold.
655
71eb442b8500 trying out 'isotopy n-category', and explaining the difference better
Scott Morrison <scott@tqft.net>
parents: 654
diff changeset
   877
Let $\cC$ be an isotopy $n$-category.
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   878
Let $\bc_*(Y;\cC)$ be the $A_\infty$ $k$-category associated to $Y$ as above.
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   879
Then
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   880
\[
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   881
	\bc_*(Y\times W; \cC) \simeq \clh{\bc_*(Y;\cC)}(W).
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   882
\]
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   883
That is, the blob complex of $Y\times W$ with coefficients in $\cC$ is homotopy equivalent
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   884
to the blob complex of $W$ with coefficients in $\bc_*(Y;\cC)$.
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   885
\end{thm}
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   886
The statement can be generalized to arbitrary fibre bundles, and indeed to arbitrary maps
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   887
(see \cite[\S7.1]{1009.5025}).
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   888
620
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   889
\begin{proof} (Sketch.)
623
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   890
The proof is similar to that of the second part of Theorem \ref{thm:gluing}.
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   891
There is a natural map from the 0-simplices of $\clh{\bc_*(Y;\cC)}(W)$ to $\bc_*(Y\times W; \cC)$,
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   892
given by reinterpreting a decomposition of $W$ labeled by $(n{-}k)$-morphisms of $\bc_*(Y; \cC)$ as a blob 
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   893
diagram on $W\times Y$.
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   894
This map can be extended to all of $\clh{\bc_*(Y;\cC)}(W)$ by sending higher simplices to zero.
620
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   895
623
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   896
To construct the homotopy inverse of the above map one first shows that
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   897
$\bc_*(Y\times W; \cC)$ is homotopy equivalent to the subcomplex generated by blob diagrams which
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   898
are small with respect to any fixed open cover of $Y\times W$.
623
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   899
For a sufficiently fine open cover the generators of this ``small" blob complex are in the image of the map
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   900
of the previous paragraph, and furthermore the preimage in $\clh{\bc_*(Y;\cC)}(W)$ of such small diagrams
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   901
lie in contractible subcomplexes.
53aed9fdfcd9 proof of product thm
Kevin Walker <kevin@canyon23.net>
parents: 622
diff changeset
   902
A standard acyclic models argument now constructs the homotopy inverse.
620
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   903
\end{proof}
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   904
28b016b716b1 adding some proof sketches
Kevin Walker <kevin@canyon23.net>
parents: 619
diff changeset
   905
%\nn{Theorem \ref{thm:product} is proved in \S \ref{ss:product-formula}, and Theorem \ref{thm:gluing} in \S \ref{sec:gluing}.}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   906
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   907
\section{Deligne's conjecture for $n$-categories}
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   908
\label{sec:applications}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   909
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   910
Let $M$ and $N$ be $n$-manifolds with common boundary $E$.
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   911
Recall (Theorem \ref{thm:gluing}) that the $A_\infty$ category $A = \bc_*(E)$
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   912
acts on $\bc_*(M)$ and $\bc_*(N)$.
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   913
Let $\hom_A(\bc_*(M), \bc_*(N))$ denote the chain complex of $A_\infty$ module maps
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   914
from $\bc_*(M)$ to $\bc_*(N)$.
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   915
Let $R$ be another $n$-manifold with boundary $E^\text{op}$.
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   916
There is a chain map
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   917
\begin{equation*}
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   918
	\hom_A(\bc_*(M), \bc_*(N)) \ot \bc_*(M) \ot_A \bc_*(R) \to \bc_*(N) \ot_A \bc_*(R) .
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   919
\end{equation*}
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   920
We think of this map as being associated to a surgery which cuts $M$ out of $M\cup_E R$ and
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   921
replaces it with $N$, yielding $N\cup_E R$.
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   922
(This is a more general notion of surgery that usual: $M$ and $N$ can be any manifolds
626
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   923
which share a common boundary.)
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   924
In analogy to Hochschild cochains, we will call elements of $\hom_A(\bc_*(M), \bc_*(N))$ ``blob cochains".
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   925
626
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   926
Recall (Theorem \ref{thm:evaluation}) that chains on the space of mapping cylinders also act on the 
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   927
blob complex.
626
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   928
An $n$-dimensional surgery cylinder is 
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   929
defined to be a sequence of mapping cylinders and surgeries (Figure \ref{delfig2}), 
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   930
modulo changing the order of distant surgeries, and conjugating a submanifold not modified in a surgery by a homeomorphism. 
659
cc0c2dfe61f3 2nd installment of changes from proof-read
Kevin Walker <kevin@canyon23.net>
parents: 658
diff changeset
   931
One can associate to this data an $(n{+}1)$-manifold with a foliation by intervals,
626
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   932
and the relations we impose correspond to homeomorphisms of the $(n{+}1)$-manifolds
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   933
which preserve the foliation.
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   934
626
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
   935
Surgery cylinders form an operad, by gluing the outer boundary of one cylinder into an inner boundary of another.
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   936
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   937
\begin{thm}[Higher dimensional Deligne conjecture]
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   938
\label{thm:deligne}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   939
The singular chains of the $n$-dimensional surgery cylinder operad act on blob cochains.
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
   940
\end{thm}
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   941
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   942
More specifically, let $M_0, N_0, \ldots, M_k, N_k$ be $n$-manifolds and let $SC^n_{\overline{M}, \overline{N}}$
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   943
denote the component of the operad with outer boundary $M_0\cup N_0$ and inner boundaries
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   944
$M_1\cup N_1,\ldots, M_k\cup N_k$.
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   945
Then there is a collection of chain maps
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   946
\begin{multline*}
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   947
	C_*(SC^n_{\overline{M}, \overline{N}})\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots \\
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   948
		\otimes \hom(\bc_*(M_{k}), \bc_*(N_{k})) \to  \hom(\bc_*(M_0), \bc_*(N_0))
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   949
\end{multline*}
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   950
which satisfy the operad compatibility conditions.
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   951
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   952
\begin{proof} (Sketch.)
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   953
We have already defined the action of mapping cylinders, in Theorem \ref{thm:evaluation}, 
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   954
and the action of surgeries is just composition of maps of $A_\infty$-modules. 
661
6345c3679795 more proofreading changes
Scott Morrison <scott@tqft.net>
parents: 660
diff changeset
   955
We only need to check that the relations of the surgery cylinded operad are satisfied. 
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   956
This follows from the locality of the action of $\CH{-}$ (i.e., that it is compatible with gluing) and associativity.
595
9c708975b61b making pinched products axioms terser, and writing a short proof of the higher deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 594
diff changeset
   957
\end{proof} 
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   958
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   959
Consider the special case where $n=1$ and all of the $M_i$'s and $N_i$'s are intervals.
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   960
We have that $SC^1_{\overline{M}, \overline{N}}$ is homotopy equivalent to the little
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   961
disks operad and $\hom(\bc_*(M_i), \bc_*(N_i))$ is homotopy equivalent to Hochschild cochains.
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   962
This special case is just the usual Deligne conjecture
628
4cce595ae1d3 adding Gerstenhaber-Voronov, explicitly not proving the mapping spaces result, and slight tweaks
Scott Morrison <scott@tqft.net>
parents: 627
diff changeset
   963
(see \cite{hep-th/9403055, MR1328534, MR1805894, MR1805923, MR2064592}).
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   964
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   965
The general case when $n=1$ goes beyond the original Deligne conjecture, as the $M_i$'s and $N_i$'s
652
821d79885bfe minor changes from proofreading
Scott Morrison <scott@tqft.net>
parents: 651
diff changeset
   966
could be disjoint unions of intervals and circles, and the surgery cylinders could be high genus surfaces.
627
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   967
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   968
If all of the $M_i$'s and $N_i$'s are $n$-balls, then $SC^n_{\overline{M}, \overline{N}}$
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   969
contains a copy of the little $(n{+}1)$-balls operad.
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   970
Thus the little $(n{+}1)$-balls operad acts on blob cochains of the $n$-ball.
b0ed73b141d8 finish deligne section; misc
Kevin Walker <kevin@canyon23.net>
parents: 626
diff changeset
   971
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
   972
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   973
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   974
%% == end of paper:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   975
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   976
%% Optional Materials and Methods Section
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   977
%% The Materials and Methods section header will be added automatically.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   978
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   979
%% Enter any subheads and the Materials and Methods text below.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   980
%\begin{materials}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   981
% Materials text
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   982
%\end{materials}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   983
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   984
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   985
%% Optional Appendix or Appendices
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   986
%% \appendix Appendix text...
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   987
%% or, for appendix with title, use square brackets:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   988
%% \appendix[Appendix Title]
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   989
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   990
\begin{acknowledgments}
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   991
It is a pleasure to acknowledge helpful conversations with 
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   992
Kevin Costello,
625
c6d069b8f931 starting on Deligne section
Kevin Walker <kevin@canyon23.net>
parents: 624
diff changeset
   993
Michael Freedman,
610
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   994
Justin Roberts,
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   995
and
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   996
Peter Teichner.
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   997
We also thank the Aspen Center for Physics for providing a pleasant and productive
Kevin Walker <kevin@canyon23.net>
parents: 609
diff changeset
   998
environment during the last stages of this project.
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
   999
\end{acknowledgments}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1000
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1001
%% PNAS does not support submission of supporting .tex files such as BibTeX.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1002
%% Instead all references must be included in the article .tex document. 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1003
%% If you currently use BibTeX, your bibliography is formed because the 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1004
%% command \verb+\bibliography{}+ brings the <filename>.bbl file into your
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1005
%% .tex document. To conform to PNAS requirements, copy the reference listings
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1006
%% from your .bbl file and add them to the article .tex file, using the
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1007
%% bibliography environment described above.  
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1008
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1009
%%  Contact pnas@nas.edu if you need assistance with your
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1010
%%  bibliography.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1011
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1012
% Sample bibliography item in PNAS format:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1013
%% \bibitem{in-text reference} comma-separated author names up to 5,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1014
%% for more than 5 authors use first author last name et al. (year published)
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1015
%% article title  {\it Journal Name} volume #: start page-end page.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1016
%% ie,
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1017
% \bibitem{Neuhaus} Neuhaus J-M, Sitcher L, Meins F, Jr, Boller T (1991) 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1018
% A short C-terminal sequence is necessary and sufficient for the
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1019
% targeting of chitinases to the plant vacuole. 
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1020
% {\it Proc Natl Acad Sci USA} 88:10362-10366.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1021
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1022
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1023
%% Enter the largest bibliography number in the facing curly brackets
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1024
%% following \begin{thebibliography}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1025
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1026
%%%% BIBTEX
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1027
\bibliographystyle{alpha}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1028
\bibliography{../bibliography/bibliography}
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1029
572
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1030
%%%% non-BIBTEX
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1031
%\begin{thebibliography}{}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1032
%
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1033
%\end{thebibliography}
e0f5ec582725 incorporating statements of results in PNAS article
Scott Morrison <scott@tqft.net>
parents: 571
diff changeset
  1034
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1035
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1036
\end{article}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1037
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1038
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1039
%% Adding Figure and Table References
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1040
%% Be sure to add figures and tables after \end{article}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1041
%% and before \end{document}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1042
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1043
%% For figures, put the caption below the illustration.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1044
%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1045
%% \begin{figure}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1046
%% \caption{Almost Sharp Front}\label{afoto}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1047
%% \end{figure}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1048
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1049
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1050
\begin{figure}
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1051
\centering
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1052
\begin{tikzpicture}[%every label/.style={green}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1053
]
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1054
\node[fill=black, circle, label=below:$E$, inner sep=1.5pt](S) at (0,0) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1055
\node[fill=black, circle, label=above:$E$, inner sep=1.5pt](N) at (0,2) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1056
\draw (S) arc  (-90:90:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1057
\draw (N) arc  (90:270:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1058
\node[left] at (-1,1) {$B_1$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1059
\node[right] at (1,1) {$B_2$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1060
\end{tikzpicture}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1061
\caption{Combining two balls to get a full boundary.}\label{blah3}\end{figure}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1062
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1063
\begin{figure}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1064
\centering
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1065
\begin{tikzpicture}[%every label/.style={green},
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1066
				x=1.5cm,y=1.5cm]
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1067
\node[fill=black, circle, label=below:$E$, inner sep=2pt](S) at (0,0) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1068
\node[fill=black, circle, label=above:$E$, inner sep=2pt](N) at (0,2) {};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1069
\draw (S) arc  (-90:90:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1070
\draw (N) arc  (90:270:1);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1071
\draw (N) -- (S);
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1072
\node[left] at (-1/4,1) {$B_1$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1073
\node[right] at (1/4,1) {$B_2$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1074
\node at (1/6,3/2)  {$Y$};
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1075
\end{tikzpicture}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1076
\caption{From two balls to one ball.}\label{blah5}\end{figure}
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1077
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1078
\begin{figure}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1079
\begin{equation*}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1080
\mathfig{.23}{ncat/zz2}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1081
\end{equation*}
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1082
\caption{A small part of $\cell(W)$.}
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1083
\label{partofJfig}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1084
\end{figure}
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1085
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
  1086
\begin{figure}
626
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
  1087
%$$\mathfig{.4}{deligne/manifolds}$$
f83c27d2d210 more on deligne
Kevin Walker <kevin@canyon23.net>
parents: 625
diff changeset
  1088
$$\mathfig{.4}{deligne/mapping-cylinders}$$
594
6945422bed13 adding some figures for the axioms
Scott Morrison <scott@tqft.net>
parents: 591
diff changeset
  1089
\caption{An $n$-dimensional surgery cylinder.}\label{delfig2}
577
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
  1090
\end{figure}
9a60488cd2fc out of battery. writing a little about the deligne conjecture
Scott Morrison <scott@tqft.net>
parents: 575
diff changeset
  1091
573
8378e03d3c7f starting on cell decompositions
Scott Morrison <scott@tqft.net>
parents: 572
diff changeset
  1092
566
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1093
%% For Tables, put caption above table
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1094
%%
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1095
%% Table caption should start with a capital letter, continue with lower case
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1096
%% and not have a period at the end
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1097
%% Using @{\vrule height ?? depth ?? width0pt} in the tabular preamble will
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1098
%% keep that much space between every line in the table.
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1099
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1100
%% \begin{table}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1101
%% \caption{Repeat length of longer allele by age of onset class}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1102
%% \begin{tabular}{@{\vrule height 10.5pt depth4pt  width0pt}lrcccc}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1103
%% table text
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1104
%% \end{tabular}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1105
%% \end{table}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1106
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1107
%% For two column figures and tables, use the following:
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1108
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1109
%% \begin{figure*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1110
%% \caption{Almost Sharp Front}\label{afoto}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1111
%% \end{figure*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1112
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1113
%% \begin{table*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1114
%% \caption{Repeat length of longer allele by age of onset class}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1115
%% \begin{tabular}{ccc}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1116
%% table text
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1117
%% \end{tabular}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1118
%% \end{table*}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1119
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1120
\end{document}
33de88ae7b62 PNAS style files, and template
Scott Morrison <scott@tqft.net>
parents:
diff changeset
  1121