text/ncat.tex
changeset 393 0daa4983d229
parent 392 a7b53f6a339d
child 398 2a9c637182f0
equal deleted inserted replaced
392:a7b53f6a339d 393:0daa4983d229
  1965 Let $X_1$ and $X_2$ be the two components of $Y\times I$ (pinched) cut along
  1965 Let $X_1$ and $X_2$ be the two components of $Y\times I$ (pinched) cut along
  1966 $D\times I$.
  1966 $D\times I$.
  1967 (Here we are overloading notation and letting $D$ denote both a decorated and an undecorated
  1967 (Here we are overloading notation and letting $D$ denote both a decorated and an undecorated
  1968 manifold.)
  1968 manifold.)
  1969 We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$
  1969 We have $\bd X_i = Y_i \cup \ol{Y}_i \cup (D\times I)$
  1970 (see Figure xxxx).
  1970 (see Figure \ref{jun23a}).
       
  1971 \begin{figure}[t]
       
  1972 \begin{equation*}
       
  1973 \mathfig{.6}{tempkw/jun23a}
       
  1974 \end{equation*}
       
  1975 \caption{$Y\times I$ sliced open}
       
  1976 \label{jun23a}
       
  1977 \end{figure}
  1971 Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$
  1978 Given $a_i\in \cS(Y_i)$, $b_i\in \cS(\ol{Y}_i)$ and $v\in\cS(D\times I)$
  1972 which agree on their boundaries, we can evaluate
  1979 which agree on their boundaries, we can evaluate
  1973 \[
  1980 \[
  1974 	z_{Y_i}(a_i\bullet b_i\bullet v) \in \c .
  1981 	z_{Y_i}(a_i\bullet b_i\bullet v) \in \c .
  1975 \]
  1982 \]
  2006 \[
  2013 \[
  2007 	\cS(C\cup \ol{B}) \stackrel{f\ot\id}{\longrightarrow}
  2014 	\cS(C\cup \ol{B}) \stackrel{f\ot\id}{\longrightarrow}
  2008 		\cS(A\cup B\cup \ol{B})  \stackrel{\id\ot\psi}{\longrightarrow}
  2015 		\cS(A\cup B\cup \ol{B})  \stackrel{\id\ot\psi}{\longrightarrow}
  2009 			\cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) .
  2016 			\cS(A\cup(D\times I)) \stackrel{\cong}{\longrightarrow} \cS(A) .
  2010 \]
  2017 \]
  2011 (See Figure xxxx.)
  2018 (See Figure \ref{jun23b}.)
       
  2019 \begin{figure}[t]
       
  2020 \begin{equation*}
       
  2021 \mathfig{.5}{tempkw/jun23b}
       
  2022 \end{equation*}
       
  2023 \caption{Moving $B$ from top to bottom}
       
  2024 \label{jun23b}
       
  2025 \end{figure}
  2012 Let $D' = B\cap C$.
  2026 Let $D' = B\cap C$.
  2013 Using the inner products there is an adjoint map
  2027 Using the inner products there is an adjoint map
  2014 \[
  2028 \[
  2015 	\psi^\dagger: \cS(D'\times I) \to \cS(\ol{B})\ot\cS(B) .
  2029 	\psi^\dagger: \cS(D'\times I) \to \cS(\ol{B})\ot\cS(B) .
  2016 \]
  2030 \]
  2020 	\cS(C) \stackrel{\cong}{\longrightarrow}
  2034 	\cS(C) \stackrel{\cong}{\longrightarrow}
  2021 		\cS(C\cup(D'\times I)) \stackrel{\id\ot\psi^\dagger}{\longrightarrow}
  2035 		\cS(C\cup(D'\times I)) \stackrel{\id\ot\psi^\dagger}{\longrightarrow}
  2022 			\cS(C\cup \ol{B}\cup B)   \stackrel{f'\ot\id}{\longrightarrow}
  2036 			\cS(C\cup \ol{B}\cup B)   \stackrel{f'\ot\id}{\longrightarrow}
  2023 				\cS(A\cup B) .
  2037 				\cS(A\cup B) .
  2024 \]
  2038 \]
       
  2039 (See Figure \ref{jun23c}.)
       
  2040 \begin{figure}[t]
       
  2041 \begin{equation*}
       
  2042 \mathfig{.5}{tempkw/jun23c}
       
  2043 \end{equation*}
       
  2044 \caption{Moving $B$ from bottom to top}
       
  2045 \label{jun23c}
       
  2046 \end{figure}
       
  2047 Let $D' = B\cap C$.
  2025 It is not hard too show that the above two maps are mutually inverse.
  2048 It is not hard too show that the above two maps are mutually inverse.
  2026 
  2049 
  2027 \begin{lem}
  2050 \begin{lem}
  2028 Any two choices of $E$ and $E'$ are related by a series of modifications as above.
  2051 Any two choices of $E$ and $E'$ are related by a series of modifications as above.
  2029 \end{lem}
  2052 \end{lem}
  2047 As we remarked above, the isomorphisms corresponding to these two pushes are mutually
  2070 As we remarked above, the isomorphisms corresponding to these two pushes are mutually
  2048 inverse, so we have invariance under this movie move.
  2071 inverse, so we have invariance under this movie move.
  2049 
  2072 
  2050 The second movie move replaces to successive pushes in the same direction,
  2073 The second movie move replaces to successive pushes in the same direction,
  2051 across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$.
  2074 across $B_1$ and $B_2$, say, with a single push across $B_1\cup B_2$.
  2052 (See Figure xxxx.)
  2075 (See Figure \ref{jun23d}.)
       
  2076 \begin{figure}[t]
       
  2077 \begin{equation*}
       
  2078 \mathfig{.9}{tempkw/jun23d}
       
  2079 \end{equation*}
       
  2080 \caption{A movie move}
       
  2081 \label{jun23d}
       
  2082 \end{figure}
  2053 Invariance under this movie move follows from the compatibility of the inner
  2083 Invariance under this movie move follows from the compatibility of the inner
  2054 product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.
  2084 product for $B_1\cup B_2$ with the inner products for $B_1$ and $B_2$.
  2055 
  2085 
  2056 If $n\ge 2$, these two movie move suffice:
  2086 If $n\ge 2$, these two movie move suffice:
  2057 
  2087