blob1.tex
changeset 76 16d7f0938baa
parent 75 33aaaca22af6
child 79 8ef65f3bea2b
equal deleted inserted replaced
75:33aaaca22af6 76:16d7f0938baa
  1199 \nn{this completes proof}
  1199 \nn{this completes proof}
  1200 
  1200 
  1201 \input{text/explicit.tex}
  1201 \input{text/explicit.tex}
  1202 
  1202 
  1203 \section{Comparing definitions of $A_\infty$ algebras}
  1203 \section{Comparing definitions of $A_\infty$ algebras}
       
  1204 \label{sec:comparing-A-infty}
  1204 In this section, we make contact between the usual definition of an $A_\infty$ algebra and our definition of a topological $A_\infty$ algebra, from Definition \ref{defn:topological-Ainfty-category}.
  1205 In this section, we make contact between the usual definition of an $A_\infty$ algebra and our definition of a topological $A_\infty$ algebra, from Definition \ref{defn:topological-Ainfty-category}.
  1205 
  1206 
  1206 We begin be restricting the data of a topological $A_\infty$ algebra to the standard interval $[0,1]$, which we can alternatively characterise as:
  1207 We begin be restricting the data of a topological $A_\infty$ algebra to the standard interval $[0,1]$, which we can alternatively characterise as:
  1207 \begin{defn}
  1208 \begin{defn}
  1208 A \emph{topological $A_\infty$ category on $[0,1]$} $\cC$ has a set of objects $\Obj(\cC)$, and for each $a,b \in \Obj(\cC)$, a chain complex $\cC_{a,b}$, along with
  1209 A \emph{topological $A_\infty$ category on $[0,1]$} $\cC$ has a set of objects $\Obj(\cC)$, and for each $a,b \in \Obj(\cC)$, a chain complex $\cC_{a,b}$, along with
  1260 \end{align*}
  1261 \end{align*}
  1261 as required (c.f. \cite[p. 6]{MR1854636}).
  1262 as required (c.f. \cite[p. 6]{MR1854636}).
  1262 \todo{then the general case.}
  1263 \todo{then the general case.}
  1263 We won't describe a reverse construction (producing a topological $A_\infty$ category from a `conventional' $A_\infty$ category), but we presume that this will be easy for the experts.
  1264 We won't describe a reverse construction (producing a topological $A_\infty$ category from a `conventional' $A_\infty$ category), but we presume that this will be easy for the experts.
  1264 
  1265 
       
  1266 \section{Morphisms and duals of topological $A_\infty$ modules}
       
  1267 \label{sec:A-infty-hom-and-duals}%
       
  1268 
       
  1269 \begin{defn}
       
  1270 If $\cM$ and $\cN$ are topological $A_\infty$ left modules over a topological $A_\infty$ category $\cC$, then a morphism $f: \cM \to \cN$ consists of a chain map $f:\cM(J,p;b) \to \cN(J,p;b)$ for each right marked interval $(J,p)$ with a boundary condition $b$, such that  for each interval $J'$ the diagram
       
  1271 \begin{equation*}
       
  1272 \xymatrix{
       
  1273 \cC(J';a,b) \tensor \cM(J,p;b) \ar[r]^{\text{gl}} \ar[d]^{\id \tensor f} & \cM(J' cup J,a) \ar[d]^f \\
       
  1274 \cC(J';a,b) \tensor \cN(J,p;b) \ar[r]^{\text{gl}}                                & \cN(J' cup J,a) 
       
  1275 }
       
  1276 \end{equation*}
       
  1277 commutes on the nose, and the diagram
       
  1278 \begin{equation*}
       
  1279 \xymatrix{
       
  1280 \CD{(J,p) \to (J',p')} \tensor \cM(J,p;a) \ar[r]^{\text{ev}} \ar[d]^{\id \tensor f} & \cM(J',p';a) \ar[d]^f \\
       
  1281 \CD{(J,p) \to (J',p')} \tensor \cN(J,p;a) \ar[r]^{\text{ev}}  & \cN(J',p';a) \\
       
  1282 }
       
  1283 \end{equation*}
       
  1284 commutes up to a weakly unique homotopy.
       
  1285 \end{defn}
       
  1286 
       
  1287 The variations required for right modules and bimodules should be obvious.
       
  1288 
       
  1289 \todo{duals}
       
  1290 \todo{ the functors $\hom_{\lmod{\cC}}\left(\cM \to -\right)$ and $\cM^* \tensor_{\cC} -$ from $\lmod{\cC}$ to $\Vect$ are naturally isomorphic}
  1265 
  1291 
  1266 
  1292 
  1267 \input{text/obsolete.tex}
  1293 \input{text/obsolete.tex}
  1268 
  1294 
  1269 % ----------------------------------------------------------------
  1295 % ----------------------------------------------------------------