text/intro.tex
changeset 454 3377d4db80d9
parent 437 93ce0ba3d2d7
child 464 6c760675d461
equal deleted inserted replaced
453:e88e44347b36 454:3377d4db80d9
   207 \label{property:functoriality}%
   207 \label{property:functoriality}%
   208 The blob complex is functorial with respect to homeomorphisms.
   208 The blob complex is functorial with respect to homeomorphisms.
   209 That is, 
   209 That is, 
   210 for a fixed $n$-dimensional system of fields $\cC$, the association
   210 for a fixed $n$-dimensional system of fields $\cC$, the association
   211 \begin{equation*}
   211 \begin{equation*}
   212 X \mapsto \bc_*^{\cC}(X)
   212 X \mapsto \bc_*(X; \cC)
   213 \end{equation*}
   213 \end{equation*}
   214 is a functor from $n$-manifolds and homeomorphisms between them to chain 
   214 is a functor from $n$-manifolds and homeomorphisms between them to chain 
   215 complexes and isomorphisms between them.
   215 complexes and isomorphisms between them.
   216 \end{property}
   216 \end{property}
   217 As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*^\cC(X)$; 
   217 As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cC)$; 
   218 this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below.
   218 this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below.
   219 
   219 
   220 The blob complex is also functorial (indeed, exact) with respect to $\cC$, 
   220 The blob complex is also functorial (indeed, exact) with respect to $\cC$, 
   221 although we will not address this in detail here.
   221 although we will not address this in detail here.
   222 
   222 
   248 \begin{property}[Contractibility]
   248 \begin{property}[Contractibility]
   249 \label{property:contractibility}%
   249 \label{property:contractibility}%
   250 With field coefficients, the blob complex on an $n$-ball is contractible in the sense that it is homotopic to its $0$-th homology.
   250 With field coefficients, the blob complex on an $n$-ball is contractible in the sense that it is homotopic to its $0$-th homology.
   251 Moreover, the $0$-th homology of balls can be canonically identified with the vector spaces associated by the system of fields $\cC$ to balls.
   251 Moreover, the $0$-th homology of balls can be canonically identified with the vector spaces associated by the system of fields $\cC$ to balls.
   252 \begin{equation*}
   252 \begin{equation*}
   253 \xymatrix{\bc_*^{\cC}(B^n) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*^{\cC}(B^n)) \ar[r]^(0.6)\iso & \cC(B^n)}
   253 \xymatrix{\bc_*(B^n;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & H_0(\bc_*(B^n;\cC)) \ar[r]^(0.6)\iso & \cC(B^n)}
   254 \end{equation*}
   254 \end{equation*}
   255 \end{property}
   255 \end{property}
   256 
   256 
   257 Properties \ref{property:functoriality} will be immediate from the definition given in
   257 Properties \ref{property:functoriality} will be immediate from the definition given in
   258 \S \ref{sec:blob-definition}, and we'll recall it at the appropriate point there.
   258 \S \ref{sec:blob-definition}, and we'll recall it at the appropriate point there.
   269 The $0$-th blob homology of $X$ is the usual 
   269 The $0$-th blob homology of $X$ is the usual 
   270 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   270 (dual) TQFT Hilbert space (a.k.a.\ skein module) associated to $X$
   271 by $\cC$.
   271 by $\cC$.
   272 (See \S \ref{sec:local-relations}.)
   272 (See \S \ref{sec:local-relations}.)
   273 \begin{equation*}
   273 \begin{equation*}
   274 H_0(\bc_*^{\cC}(X)) \iso A^{\cC}(X)
   274 H_0(\bc_*(X;\cC)) \iso A_{\cC}(X)
   275 \end{equation*}
   275 \end{equation*}
   276 \end{thm:skein-modules}
   276 \end{thm:skein-modules}
   277 
   277 
   278 \newtheorem*{thm:hochschild}{Theorem \ref{thm:hochschild}}
   278 \newtheorem*{thm:hochschild}{Theorem \ref{thm:hochschild}}
   279 
   279 
   280 \begin{thm:hochschild}[Hochschild homology when $X=S^1$]
   280 \begin{thm:hochschild}[Hochschild homology when $X=S^1$]
   281 The blob complex for a $1$-category $\cC$ on the circle is
   281 The blob complex for a $1$-category $\cC$ on the circle is
   282 quasi-isomorphic to the Hochschild complex.
   282 quasi-isomorphic to the Hochschild complex.
   283 \begin{equation*}
   283 \begin{equation*}
   284 \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).}
   284 \xymatrix{\bc_*(S^1;\cC) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).}
   285 \end{equation*}
   285 \end{equation*}
   286 \end{thm:hochschild}
   286 \end{thm:hochschild}
   287 
   287 
   288 Theorem \ref{thm:skein-modules} is immediate from the definition, and
   288 Theorem \ref{thm:skein-modules} is immediate from the definition, and
   289 Theorem \ref{thm:hochschild} is established in \S \ref{sec:hochschild}.
   289 Theorem \ref{thm:hochschild} is established in \S \ref{sec:hochschild}.
   295 
   295 
   296 In the following $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$.
   296 In the following $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$.
   297 
   297 
   298 \newtheorem*{thm:CH}{Theorem \ref{thm:CH}}
   298 \newtheorem*{thm:CH}{Theorem \ref{thm:CH}}
   299 
   299 
   300 \begin{thm:CH}[$C_*(\Homeo(-))$ action]\mbox{}\\
   300 \begin{thm:CH}[$C_*(\Homeo(-))$ action]
   301 \vspace{-0.5cm}
       
   302 \label{thm:evaluation}%
   301 \label{thm:evaluation}%
   303 There is a chain map
   302 There is a chain map
   304 \begin{equation*}
   303 \begin{equation*}
   305 \ev_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X).
   304 \ev_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X).
   306 \end{equation*}
   305 \end{equation*}
   311 \item For
   310 \item For
   312 any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram
   311 any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram
   313 (using the gluing maps described in Property \ref{property:gluing-map}) commutes (up to homotopy).
   312 (using the gluing maps described in Property \ref{property:gluing-map}) commutes (up to homotopy).
   314 \begin{equation*}
   313 \begin{equation*}
   315 \xymatrix@C+2cm{
   314 \xymatrix@C+2cm{
   316      \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]^<<<<<<<<<<<<{\ev_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow) \\
       
   317      \CH{X} \otimes \bc_*(X)
   315      \CH{X} \otimes \bc_*(X)
   318         \ar[r]_{\ev_{X}}  \ar[u]^{\gl^{\Homeo}_Y \otimes \gl_Y}  &
   316         \ar[r]_{\ev_{X}}  \ar[d]^{\gl^{\Homeo}_Y \otimes \gl_Y}  &
   319             \bc_*(X) \ar[u]_{\gl_Y}
   317             \bc_*(X) \ar[d]_{\gl_Y} \\
       
   318      \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]^<<<<<<<<<<<<{\ev_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow)
   320 }
   319 }
   321 \end{equation*}
   320 \end{equation*}
   322 \end{enumerate}
   321 \end{enumerate}
   323 Moreover any such chain map is unique, up to an iterated homotopy.
   322 Moreover any such chain map is unique, up to an iterated homotopy.
   324 (That is, any pair of homotopies have a homotopy between them, and so on.)
   323 (That is, any pair of homotopies have a homotopy between them, and so on.)
   327 \newtheorem*{thm:CH-associativity}{Theorem \ref{thm:CH-associativity}}
   326 \newtheorem*{thm:CH-associativity}{Theorem \ref{thm:CH-associativity}}
   328 
   327 
   329 
   328 
   330 Further,
   329 Further,
   331 \begin{thm:CH-associativity}
   330 \begin{thm:CH-associativity}
   332 \item The chain map of Theorem \ref{thm:CH} is associative, in the sense that the following diagram commutes (up to homotopy).
   331 The chain map of Theorem \ref{thm:CH} is associative, in the sense that the following diagram commutes (up to homotopy).
   333 \begin{equation*}
   332 \begin{equation*}
   334 \xymatrix{
   333 \xymatrix{
   335 \CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor \ev_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{\ev_X} \\
   334 \CH{X} \tensor \CH{X} \tensor \bc_*(X) \ar[r]^<<<<<{\id \tensor \ev_X} \ar[d]^{\compose \tensor \id} & \CH{X} \tensor \bc_*(X) \ar[d]^{\ev_X} \\
   336 \CH{X} \tensor \bc_*(X) \ar[r]^{\ev_X} & \bc_*(X)
   335 \CH{X} \tensor \bc_*(X) \ar[r]^{\ev_X} & \bc_*(X)
   337 }
   336 }