text/deligne.tex
changeset 283 418919afd077
parent 237 d42ae7a54143
child 288 6c1b3c954c7e
equal deleted inserted replaced
278:79f7b1bd7b1a 283:418919afd077
     9 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
     9 The singular chains of the $n$-dimensional fat graph operad act on blob cochains.
    10 \end{property:deligne}
    10 \end{property:deligne}
    11 
    11 
    12 We will state this more precisely below as Proposition \ref{prop:deligne}, and just sketch a proof. First, we recall the usual Deligne conjecture, explain how to think of it as a statement about blob complexes, and begin to generalize it.
    12 We will state this more precisely below as Proposition \ref{prop:deligne}, and just sketch a proof. First, we recall the usual Deligne conjecture, explain how to think of it as a statement about blob complexes, and begin to generalize it.
    13 
    13 
    14 \def\mapinf{\Maps_\infty}
    14 %\def\mapinf{\Maps_\infty}
    15 
    15 
    16 The usual Deligne conjecture \nn{need refs} gives a map
    16 The usual Deligne conjecture \nn{need refs} gives a map
    17 \[
    17 \[
    18 	C_*(LD_k)\otimes \overbrace{Hoch^*(C, C)\otimes\cdots\otimes Hoch^*(C, C)}^{\text{$k$ copies}}
    18 	C_*(LD_k)\otimes \overbrace{Hoch^*(C, C)\otimes\cdots\otimes Hoch^*(C, C)}^{\text{$k$ copies}}
    19 			\to  Hoch^*(C, C) .
    19 			\to  Hoch^*(C, C) .
    23 The little disks operad is homotopy equivalent to the fat graph operad
    23 The little disks operad is homotopy equivalent to the fat graph operad
    24 \nn{need ref; and need to restrict which fat graphs}, and Hochschild cochains are homotopy equivalent to $A_\infty$ endomorphisms
    24 \nn{need ref; and need to restrict which fat graphs}, and Hochschild cochains are homotopy equivalent to $A_\infty$ endomorphisms
    25 of the blob complex of the interval.
    25 of the blob complex of the interval.
    26 \nn{need to make sure we prove this above}.
    26 \nn{need to make sure we prove this above}.
    27 So the 1-dimensional Deligne conjecture can be restated as
    27 So the 1-dimensional Deligne conjecture can be restated as
    28 \begin{eqnarray*}
    28 \[
    29 	C_*(FG_k)\otimes \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots
    29 	C_*(FG_k)\otimes \hom(\bc^C_*(I), \bc^C_*(I))\otimes\cdots
    30 	\otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) & \\
    30 	\otimes \hom(\bc^C_*(I), \bc^C_*(I))
    31 	  & \hspace{-5em} \to  \mapinf(\bc^C_*(I), \bc^C_*(I)) .
    31 	  \to  \hom(\bc^C_*(I), \bc^C_*(I)) .
    32 \end{eqnarray*}
    32 \]
    33 See Figure \ref{delfig1}.
    33 See Figure \ref{delfig1}.
    34 \begin{figure}[!ht]
    34 \begin{figure}[!ht]
    35 $$\mathfig{.9}{deligne/intervals}$$
    35 $$\mathfig{.9}{deligne/intervals}$$
    36 \caption{A fat graph}\label{delfig1}\end{figure}
    36 \caption{A fat graph}\label{delfig1}\end{figure}
    37 
    37 
    38 We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval
    38 We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval
    39 of Figure \ref{delfig1} and ending at the topmost interval.
    39 of Figure \ref{delfig1} and ending at the topmost interval.
    40 The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph.
    40 The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph.
    41 We remove the bottom interval of the bigon and replace it with the top interval.
    41 We remove the bottom interval of the bigon and replace it with the top interval.
    42 To map this topological operation to an algebraic one, we need, for each hole, element of
    42 To map this topological operation to an algebraic one, we need, for each hole, an element of
    43 $\mapinf(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$.
    43 $\hom(\bc^C_*(I_{\text{bottom}}), \bc^C_*(I_{\text{top}}))$.
    44 So for each fixed fat graph we have a map
    44 So for each fixed fat graph we have a map
    45 \[
    45 \[
    46 	 \mapinf(\bc^C_*(I), \bc^C_*(I))\otimes\cdots
    46 	 \hom(\bc^C_*(I), \bc^C_*(I))\otimes\cdots
    47 	\otimes \mapinf(\bc^C_*(I), \bc^C_*(I))  \to  \mapinf(\bc^C_*(I), \bc^C_*(I)) .
    47 	\otimes \hom(\bc^C_*(I), \bc^C_*(I))  \to  \hom(\bc^C_*(I), \bc^C_*(I)) .
    48 \]
    48 \]
    49 If we deform the fat graph, corresponding to a 1-chain in $C_*(FG_k)$, we get a homotopy
    49 If we deform the fat graph, corresponding to a 1-chain in $C_*(FG_k)$, we get a homotopy
    50 between the maps associated to the endpoints of the 1-chain.
    50 between the maps associated to the endpoints of the 1-chain.
    51 Similarly, higher-dimensional chains in $C_*(FG_k)$ give rise to higher homotopies.
    51 Similarly, higher-dimensional chains in $C_*(FG_k)$ give rise to higher homotopies.
    52 
    52 
    63 \begin{figure}[!ht]
    63 \begin{figure}[!ht]
    64 $$\mathfig{.9}{deligne/manifolds}$$
    64 $$\mathfig{.9}{deligne/manifolds}$$
    65 \caption{A fat graph}\label{delfig2}\end{figure}
    65 \caption{A fat graph}\label{delfig2}\end{figure}
    66 The components of the $n$-dimensional fat graph operad are indexed by tuples
    66 The components of the $n$-dimensional fat graph operad are indexed by tuples
    67 $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$.
    67 $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$.
    68 Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all diffeomorphic to 
    68 \nn{not quite true: this is coarser than components}
       
    69 Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all homeomorphic to 
    69 the $n$-ball is equivalent to the little $n{+}1$-disks operad.
    70 the $n$-ball is equivalent to the little $n{+}1$-disks operad.
       
    71 \nn{what about rotating in the horizontal directions?}
    70 
    72 
    71 
    73 
    72 If $M$ and $N$ are $n$-manifolds sharing the same boundary, we define
    74 If $M$ and $N$ are $n$-manifolds sharing the same boundary, we define
    73 the blob cochains $\bc^*(A, B)$ (analogous to Hochschild cohomology) to be
    75 the blob cochains $\bc^*(A, B)$ (analogous to Hochschild cohomology) to be
    74 $A_\infty$ maps from $\bc_*(M)$ to $\bc_*(N)$, where we think of both
    76 $A_\infty$ maps from $\bc_*(M)$ to $\bc_*(N)$, where we think of both
    80 Putting this together we get 
    82 Putting this together we get 
    81 \begin{prop}(Precise statement of Property \ref{property:deligne})
    83 \begin{prop}(Precise statement of Property \ref{property:deligne})
    82 \label{prop:deligne}
    84 \label{prop:deligne}
    83 There is a collection of maps
    85 There is a collection of maps
    84 \begin{eqnarray*}
    86 \begin{eqnarray*}
    85 	C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
    87 	C_*(FG^n_{\overline{M}, \overline{N}})\otimes \hom(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
    86 \mapinf(\bc_*(M_{k}), \bc_*(N_{k})) & \\
    88 \hom(\bc_*(M_{k}), \bc_*(N_{k})) & \\
    87 	& \hspace{-11em}\to  \mapinf(\bc_*(M_0), \bc_*(N_0))
    89 	& \hspace{-11em}\to  \hom(\bc_*(M_0), \bc_*(N_0))
    88 \end{eqnarray*}
    90 \end{eqnarray*}
    89 which satisfy an operad type compatibility condition. \nn{spell this out}
    91 which satisfy an operad type compatibility condition. \nn{spell this out}
    90 \end{prop}
    92 \end{prop}
    91 
    93 
    92 Note that if $k=0$ then this is just the action of chains of diffeomorphisms from Section \ref{sec:evaluation}.
    94 Note that if $k=0$ then this is just the action of chains of diffeomorphisms from Section \ref{sec:evaluation}.