text/deligne.tex
changeset 237 d42ae7a54143
parent 194 8d3f0bc6a76e
child 283 418919afd077
equal deleted inserted replaced
236:3feb6e24a518 237:d42ae7a54143
    30 	\otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) & \\
    30 	\otimes \mapinf(\bc^C_*(I), \bc^C_*(I)) & \\
    31 	  & \hspace{-5em} \to  \mapinf(\bc^C_*(I), \bc^C_*(I)) .
    31 	  & \hspace{-5em} \to  \mapinf(\bc^C_*(I), \bc^C_*(I)) .
    32 \end{eqnarray*}
    32 \end{eqnarray*}
    33 See Figure \ref{delfig1}.
    33 See Figure \ref{delfig1}.
    34 \begin{figure}[!ht]
    34 \begin{figure}[!ht]
    35 $$\mathfig{.9}{tempkw/delfig1}$$
    35 $$\mathfig{.9}{deligne/intervals}$$
    36 \caption{A fat graph}\label{delfig1}\end{figure}
    36 \caption{A fat graph}\label{delfig1}\end{figure}
    37 
    37 
    38 We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval
    38 We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval
    39 of Figure \ref{delfig1} and ending at the topmost interval.
    39 of Figure \ref{delfig1} and ending at the topmost interval.
    40 The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph.
    40 The surgeries correspond to the $k$ bigon-shaped ``holes" in the fat graph.
    51 Similarly, higher-dimensional chains in $C_*(FG_k)$ give rise to higher homotopies.
    51 Similarly, higher-dimensional chains in $C_*(FG_k)$ give rise to higher homotopies.
    52 
    52 
    53 It should now be clear how to generalize this to higher dimensions.
    53 It should now be clear how to generalize this to higher dimensions.
    54 In the sequence-of-surgeries description above, we never used the fact that the manifolds
    54 In the sequence-of-surgeries description above, we never used the fact that the manifolds
    55 involved were 1-dimensional.
    55 involved were 1-dimensional.
    56 Thus we can define a $n$-dimensional fat graph to sequence of general surgeries
    56 Thus we can define a $n$-dimensional fat graph to be a sequence of general surgeries
    57 on an $n$-manifold.
    57 on an $n$-manifold.
    58 More specifically,
    58 More specifically,
    59 the $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries
    59 the $n$-dimensional fat graph operad can be thought of as a sequence of general surgeries
    60 $R_i \cup M_i \leadsto R_i \cup N_i$ together with mapping cylinders of diffeomorphisms
    60 $R_i \cup M_i \leadsto R_i \cup N_i$ together with mapping cylinders of diffeomorphisms
    61 $f_i: R_i\cup N_i \to R_{i+1}\cup M_{i+1}$.
    61 $f_i: R_i\cup N_i \to R_{i+1}\cup M_{i+1}$.
    62 (See Figure \ref{delfig2}.)
    62 (See Figure \ref{delfig2}.)
    63 \begin{figure}[!ht]
    63 \begin{figure}[!ht]
    64 $$\mathfig{.9}{tempkw/delfig2}$$
    64 $$\mathfig{.9}{deligne/manifolds}$$
    65 \caption{A fat graph}\label{delfig2}\end{figure}
    65 \caption{A fat graph}\label{delfig2}\end{figure}
    66 The components of the $n$-dimensional fat graph operad are indexed by tuples
    66 The components of the $n$-dimensional fat graph operad are indexed by tuples
    67 $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$.
    67 $(\overline{M}, \overline{N}) = ((M_0,\ldots,M_k), (N_0,\ldots,N_k))$.
    68 Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all diffeomorphic to 
    68 Note that the suboperad where $M_i$, $N_i$ and $R_i\cup M_i$ are all diffeomorphic to 
    69 the $n$-ball is equivalent to the little $n{+}1$-disks operad.
    69 the $n$-ball is equivalent to the little $n{+}1$-disks operad.
    80 Putting this together we get 
    80 Putting this together we get 
    81 \begin{prop}(Precise statement of Property \ref{property:deligne})
    81 \begin{prop}(Precise statement of Property \ref{property:deligne})
    82 \label{prop:deligne}
    82 \label{prop:deligne}
    83 There is a collection of maps
    83 There is a collection of maps
    84 \begin{eqnarray*}
    84 \begin{eqnarray*}
    85 	C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_0), \bc_*(N_0))\otimes\cdots\otimes 
    85 	C_*(FG^n_{\overline{M}, \overline{N}})\otimes \mapinf(\bc_*(M_1), \bc_*(N_1))\otimes\cdots\otimes 
    86 \mapinf(\bc_*(M_{k-1}), \bc_*(N_{k-1})) & \\
    86 \mapinf(\bc_*(M_{k}), \bc_*(N_{k})) & \\
    87 	& \hspace{-11em}\to  \mapinf(\bc_*(M_k), \bc_*(N_k))
    87 	& \hspace{-11em}\to  \mapinf(\bc_*(M_0), \bc_*(N_0))
    88 \end{eqnarray*}
    88 \end{eqnarray*}
    89 which satisfy an operad type compatibility condition. \nn{spell this out}
    89 which satisfy an operad type compatibility condition. \nn{spell this out}
    90 \end{prop}
    90 \end{prop}
    91 
    91 
    92 Note that if $k=0$ then this is just the action of chains of diffeomorphisms from Section \ref{sec:evaluation}.
    92 Note that if $k=0$ then this is just the action of chains of diffeomorphisms from Section \ref{sec:evaluation}.