text/evmap.tex
changeset 885 61541264d4b3
parent 853 870d6fac5420
child 905 7afa2ffbbac8
equal deleted inserted replaced
884:d5caffd01b72 885:61541264d4b3
   121 Let $f_j:B\to B$ be the restriction of $\bar{f}_j$ to $B$; $f_j$ maps $B$ homeomorphically to 
   121 Let $f_j:B\to B$ be the restriction of $\bar{f}_j$ to $B$; $f_j$ maps $B$ homeomorphically to 
   122 a slightly smaller submanifold of $B$.
   122 a slightly smaller submanifold of $B$.
   123 Let $g_j = f_1\circ f_2\circ\cdots\circ f_j$.
   123 Let $g_j = f_1\circ f_2\circ\cdots\circ f_j$.
   124 Let $g$ be the last of the $g_j$'s.
   124 Let $g$ be the last of the $g_j$'s.
   125 Choose the sequence $\bar{f}_j$ so that 
   125 Choose the sequence $\bar{f}_j$ so that 
   126 $g(B)$ is contained is an open set of $\cV_1$ and
   126 $g(B)$ is contained in an open set of $\cV_1$ and
   127 $g_{j-1}(|f_j|)$ is also contained in an open set of $\cV_1$.
   127 $g_{j-1}(|f_j|)$ is also contained in an open set of $\cV_1$.
   128 
   128 
   129 There are 1-blob diagrams $c_{ij} \in \bc_1(B)$ such that $c_{ij}$ is compatible with $\cV_1$
   129 There are 1-blob diagrams $c_{ij} \in \bc_1(B)$ such that $c_{ij}$ is compatible with $\cV_1$
   130 (more specifically, $|c_{ij}| = g_{j-1}(|f_j|)$)
   130 (more specifically, $|c_{ij}| = g_{j-1}(|f_j|)$)
   131 and $\bd c_{ij} = g_{j-1}(a_i) - g_{j}(a_i)$.
   131 and $\bd c_{ij} = g_{j-1}(a_i) - g_{j}(a_i)$.
   323 	\BD_k(X\du Y) & \cong \coprod_{i+j=k} \BD_i(X)\times\BD_j(Y) . \qedhere
   323 	\BD_k(X\du Y) & \cong \coprod_{i+j=k} \BD_i(X)\times\BD_j(Y) . \qedhere
   324 \end{align*}
   324 \end{align*}
   325 \end{proof}
   325 \end{proof}
   326 
   326 
   327 For $S\sub X$, we say that $a\in \btc_k(X)$ is {\it supported on $S$}
   327 For $S\sub X$, we say that $a\in \btc_k(X)$ is {\it supported on $S$}
   328 if there exists $a'\in \btc_k(S)$
   328 if there exist $a'\in \btc_k(S)$
   329 and $r\in \btc_0(X\setmin S)$ such that $a = a'\bullet r$.
   329 and $r\in \btc_0(X\setmin S)$ such that $a = a'\bullet r$.
   330 
   330 
   331 \newcommand\sbtc{\btc^{\cU}}
   331 \newcommand\sbtc{\btc^{\cU}}
   332 Let $\cU$ be an open cover of $X$.
   332 Let $\cU$ be an open cover of $X$.
   333 Let $\sbtc_*(X)\sub\btc_*(X)$ be the subcomplex generated by
   333 Let $\sbtc_*(X)\sub\btc_*(X)$ be the subcomplex generated by
   383 (by Lemmas \ref{bt-contract} and \ref{btc-prod}).
   383 (by Lemmas \ref{bt-contract} and \ref{btc-prod}).
   384 
   384 
   385 Now let $b$ be a generator of $C_2$.
   385 Now let $b$ be a generator of $C_2$.
   386 If $\cU$ is fine enough, there is a disjoint union of balls $V$
   386 If $\cU$ is fine enough, there is a disjoint union of balls $V$
   387 on which $b + h_1(\bd b)$ is supported.
   387 on which $b + h_1(\bd b)$ is supported.
   388 Since $\bd(b + h_1(\bd b)) = s(\bd b) \in \bc_2(X)$, we can find
   388 Since $\bd(b + h_1(\bd b)) = s(\bd b) \in \bc_1(X)$, we can find
   389 $s(b)\in \bc_2(X)$ with $\bd(s(b)) = \bd(b + h_1(\bd b))$ (by Corollary \ref{disj-union-contract}).
   389 $s(b)\in \bc_2(X)$ with $\bd(s(b)) = \bd(b + h_1(\bd b))$ (by Corollary \ref{disj-union-contract}).
   390 By Lemmas \ref{bt-contract} and \ref{btc-prod}, we can now find
   390 By Lemmas \ref{bt-contract} and \ref{btc-prod}, we can now find
   391 $h_2(b) \in \btc_3(X)$, also supported on $V$, such that $\bd(h_2(b)) = s(b) - b - h_1(\bd b)$
   391 $h_2(b) \in \btc_3(X)$, also supported on $V$, such that $\bd(h_2(b)) = s(b) - b - h_1(\bd b)$
   392 
   392 
   393 The general case, $h_k$, is similar.
   393 The general case, $h_k$, is similar.