text/tqftreview.tex
changeset 341 675f53735445
parent 340 f7da004e1f14
child 409 291f82fb79b5
equal deleted inserted replaced
340:f7da004e1f14 341:675f53735445
    46 \end{example}
    46 \end{example}
    47 
    47 
    48 \begin{example}
    48 \begin{example}
    49 \label{ex:traditional-n-categories(fields)}
    49 \label{ex:traditional-n-categories(fields)}
    50 Fix an $n$-category $C$, and let $\cC(X)$ be 
    50 Fix an $n$-category $C$, and let $\cC(X)$ be 
    51 the set of sub-cell-complexes of $X$ with codimension-$j$ cells labeled by
    51 the set of embedded cell complexes in $X$ with codimension-$j$ cells labeled by
    52 $j$-morphisms of $C$.
    52 $j$-morphisms of $C$.
    53 One can think of such sub-cell-complexes as dual to pasting diagrams for $C$.
    53 One can think of such embedded cell complexes as dual to pasting diagrams for $C$.
    54 This is described in more detail in \S \ref{sec:example:traditional-n-categories(fields)}.
    54 This is described in more detail in \S \ref{sec:example:traditional-n-categories(fields)}.
    55 \end{example}
    55 \end{example}
    56 
    56 
    57 Now for the rest of the definition of system of fields.
    57 Now for the rest of the definition of system of fields.
    58 (Readers desiring a more precise definition should refer to Subsection \ref{ss:n-cat-def}
    58 (Readers desiring a more precise definition should refer to Subsection \ref{ss:n-cat-def}
   197 
   197 
   198 
   198 
   199 \subsection{Systems of fields from $n$-categories}
   199 \subsection{Systems of fields from $n$-categories}
   200 \label{sec:example:traditional-n-categories(fields)}
   200 \label{sec:example:traditional-n-categories(fields)}
   201 We now describe in more detail Example \ref{ex:traditional-n-categories(fields)}, 
   201 We now describe in more detail Example \ref{ex:traditional-n-categories(fields)}, 
   202 systems of fields coming from sub-cell-complexes labeled
   202 systems of fields coming from embedded cell complexes labeled
   203 by $n$-category morphisms.
   203 by $n$-category morphisms.
   204 
   204 
   205 Given an $n$-category $C$ with the right sort of duality
   205 Given an $n$-category $C$ with the right sort of duality
   206 (e.g. a pivotal 2-category, *-1-category),
   206 (e.g. a pivotal 2-category, *-1-category),
   207 we can construct a system of fields as follows.
   207 we can construct a system of fields as follows.
   306 A {\it local relation} is a collection subspaces $U(B; c) \sub \lf(B; c)$,
   306 A {\it local relation} is a collection subspaces $U(B; c) \sub \lf(B; c)$,
   307 for all $n$-manifolds $B$ which are
   307 for all $n$-manifolds $B$ which are
   308 homeomorphic to the standard $n$-ball and all $c \in \cC(\bd B)$, 
   308 homeomorphic to the standard $n$-ball and all $c \in \cC(\bd B)$, 
   309 satisfying the following properties.
   309 satisfying the following properties.
   310 \begin{enumerate}
   310 \begin{enumerate}
   311 \item functoriality: 
   311 \item Functoriality: 
   312 $f(U(B; c)) = U(B', f(c))$ for all homeomorphisms $f: B \to B'$
   312 $f(U(B; c)) = U(B', f(c))$ for all homeomorphisms $f: B \to B'$
   313 \item local relations imply extended isotopy: 
   313 \item Local relations imply extended isotopy: 
   314 if $x, y \in \cC(B; c)$ and $x$ is extended isotopic 
   314 if $x, y \in \cC(B; c)$ and $x$ is extended isotopic 
   315 to $y$, then $x-y \in U(B; c)$.
   315 to $y$, then $x-y \in U(B; c)$.
   316 \item ideal with respect to gluing:
   316 \item Ideal with respect to gluing:
   317 if $B = B' \cup B''$, $x\in U(B')$, and $c\in \cC(B'')$, then $x\bullet r \in U(B)$
   317 if $B = B' \cup B''$, $x\in U(B')$, and $c\in \cC(B'')$, then $x\bullet r \in U(B)$
   318 \end{enumerate}
   318 \end{enumerate}
   319 \end{defn}
   319 \end{defn}
   320 See \cite{kw:tqft} for further details.
   320 See \cite{kw:tqft} for further details.
   321 
   321