talks/20091108-Riverside/riverside1.tex
changeset 170 6785d7aa7c49
parent 161 04e57c6a991f
child 176 8c2ed3a951e0
equal deleted inserted replaced
169:be41f435c3f3 170:6785d7aa7c49
     1 % use options
     1 % use options
     2 %  '[beamer]' for a digital projector
     2 %  '[beamer]' for a digital projector
     3 %  '[trans]' for an overhead projector
     3 %  '[trans]' for an overhead projector
     4 %  '[handout]' for 4-up printed notes
     4 %  '[handout]' for 4-up printed notes
     5 \documentclass[beamer]{beamer}
     5 \documentclass[beamer, compress]{beamer}
     6 
     6 
     7 % change talk_preamble if you want to modify the slide theme, colours, and settings for trans and handout modes.
     7 % change talk_preamble if you want to modify the slide theme, colours, and settings for trans and handout modes.
     8 \newcommand{\pathtotrunk}{../../}
     8 \newcommand{\pathtotrunk}{../../}
     9 \input{\pathtotrunk talks/talk_preamble.tex}
     9 \input{\pathtotrunk talks/talk_preamble.tex}
    10 
    10 
    17 
    17 
    18 \begin{document}
    18 \begin{document}
    19 
    19 
    20 \frame{\titlepage}
    20 \frame{\titlepage}
    21 
    21 
    22 \begin{frame}
       
    23        \frametitle{Outline}
       
    24        \tableofcontents
       
    25 \end{frame}
       
    26 
       
    27 \beamertemplatetransparentcovered 
    22 \beamertemplatetransparentcovered 
    28 
    23 
    29 \mode<beamer>{\setbeamercolor{block title}{bg=green!40!black}}
    24 \mode<beamer>{\setbeamercolor{block title}{bg=green!40!black}}
    30 
    25 
    31 \beamersetuncovermixins 
    26 \beamersetuncovermixins 
    34 
    29 
    35 
    30 
    36 
    31 
    37 \section{Overview}
    32 \section{Overview}
    38 
    33 
    39 \AtBeginSection[]
       
    40 {
       
    41    \begin{frame}<beamer>
    34    \begin{frame}<beamer>
    42        \frametitle{Outline}
    35        \frametitle{Blob homology}
    43        \tableofcontents[currentsection]
    36        \begin{quote}
    44    \end{frame}
    37       ... homotopical topology and TQFT have grown so close that I have started thinking that they are turning into the language of new foundations. 
    45 }
    38         \end{quote}
       
    39         \flushright{--- \href{http://www.ams.org/notices/200910/rtx091001268p.pdf}{Yuri Manin, September 2008}}
       
    40       \tableofcontents
       
    41 \end{frame}
    46 
    42 
    47 \begin{frame}{What is \emph{blob homology}?}
    43 \begin{frame}{What is \emph{blob homology}?}
    48 \begin{block}{}
    44 \begin{block}{}
    49 The blob complex takes an $n$-manifold $\cM$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(\cM; \cC)$.
    45 The blob complex takes an $n$-manifold $\cM$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(\cM; \cC)$.
    50 \end{block}
    46 \end{block}
    81 \begin{frame}{$n$-categories}
    77 \begin{frame}{$n$-categories}
    82 \begin{block}{Defining $n$-categories is fraught with difficulties}
    78 \begin{block}{Defining $n$-categories is fraught with difficulties}
    83 I'm not going to go into details; I'll draw $2$-dimensional pictures, and rely on your intuition for pivotal $2$-categories.
    79 I'm not going to go into details; I'll draw $2$-dimensional pictures, and rely on your intuition for pivotal $2$-categories.
    84 \end{block}
    80 \end{block}
    85 \begin{block}{}
    81 \begin{block}{}
       
    82 Kevin's talk (part $\mathbb{II}$) will explain the notions of `topological $n$-categories' and `$A_\infty$ $n$-categories'.
       
    83 \end{block}
       
    84 
       
    85 \begin{block}{}
    86 \begin{itemize}
    86 \begin{itemize}
    87 \item
    87 \item
    88 Kevin's talk (part $\mathbb{II}$) will explain the notions of `topological $n$-categories' and `$A_\infty$ $n$-categories'.\item
       
    89 Defining $n$-categories: a choice of `shape' for morphisms.
    88 Defining $n$-categories: a choice of `shape' for morphisms.
    90 \item
    89 \item
    91 We allow all shapes! A vector space for every ball.
    90 We allow all shapes! A vector space for every ball.
    92 \item
    91 \item
    93 `Strong duality' is integral in our definition.
    92 `Strong duality' is integral in our definition.
    94 \end{itemize}
    93 \end{itemize}
    95 \end{block}
    94 \end{block}
    96 \end{frame}
    95 \end{frame}
    97 
    96 
    98 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
    97 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline=-2pt]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
    99 
    98 
   100 
    99 \section{Definition}
   101 \begin{frame}{Fields and pasting diagrams}
   100 \begin{frame}{Fields and pasting diagrams}
   102 \begin{block}{Pasting diagrams}
   101 \begin{block}{Pasting diagrams}
   103 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
   102 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
   104 \end{block}
   103 \end{block}
   105 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
   104 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
   106 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$
   105 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$
   107 \end{example}
   106 \end{example}
   108 \begin{block}{}
   107 \begin{block}{}
   109 Given a field on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}.
   108 Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}.
   110 \vspace{-3mm}
   109 \vspace{-3mm}
   111 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
   110 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
   112 \end{block}
   111 \end{block}
   113 \end{frame}
   112 \end{frame}
   114 
   113 
   117 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $A(\cM,; \cC)$.
   116 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $A(\cM,; \cC)$.
   118 \end{block}
   117 \end{block}
   119 
   118 
   120 \begin{block}{}
   119 \begin{block}{}
   121 \center
   120 \center
   122 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary fields on $\cM$.
   121 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary pasting diagrams on $\cM$.
   123 \end{block}
   122 \end{block}
   124 
   123 
   125 \begin{block}{}
   124 \begin{block}{}
   126 \vspace{-1mm}
   125 \vspace{-1mm}
   127 $$\bc_1(\cM; \cC) = \setc{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$
   126 $$\bc_1(\cM; \cC) = \setcr{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$
   128 \end{block}
   127 \end{block}
   129 \vspace{-3.5mm}
   128 \vspace{-3.5mm}
   130 $$\mathfig{.5}{definition/single-blob}$$
   129 $$\mathfig{.5}{definition/single-blob}$$
   131 \vspace{-3mm}
   130 \vspace{-3mm}
   132 \begin{block}{}
   131 \begin{block}{}
   143 $$\bc_2 = \bc_2^{\text{disjoint}} \oplus \bc_2^{\text{nested}}$$
   142 $$\bc_2 = \bc_2^{\text{disjoint}} \oplus \bc_2^{\text{nested}}$$
   144 \end{block}
   143 \end{block}
   145 \begin{block}{}
   144 \begin{block}{}
   146 \vspace{-5mm}
   145 \vspace{-5mm}
   147 \begin{align*}
   146 \begin{align*}
   148 \bc_2^{\text{disjoint}} & =  \roundframe{\mathfig{0.5}{definition/disjoint-blobs}} & u_i \in \ker{\text{ev}_{B_i}}
   147 \bc_2^{\text{disjoint}} & =  \setcl{\roundframe{\mathfig{0.5}{definition/disjoint-blobs}}}{\text{ev}_{B_i}(u_i) = 0}
   149 \end{align*}
   148 \end{align*}
   150 \vspace{-4mm}
   149 \vspace{-4mm}
   151 $$d_2 : (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$
   150 $$d_2 : (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$
   152 \end{block}
   151 \end{block}
   153 \begin{block}{}
   152 \begin{block}{}
   154 \vspace{-5mm}
   153 \vspace{-5mm}
   155 \begin{align*}
   154 \begin{align*}
   156 \bc_2^{\text{nested}} & = \roundframe{\mathfig{0.5}{definition/nested-blobs}} & u \in \ker{\text{ev}_{B_1}}
   155 \bc_2^{\text{nested}} & = \setcl{\roundframe{\mathfig{0.5}{definition/nested-blobs}}}{\text{ev}_{B_1}(u)=0}
   157 \end{align*}
   156 \end{align*}
   158 \vspace{-4mm}
   157 \vspace{-4mm}
   159 $$d_2 : (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r')$$
   158 $$d_2 : (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r')$$
   160 \end{block}
   159 \end{block}
   161 \end{frame}
   160 \end{frame}
   162 
   161 
       
   162 \begin{frame}{Definition, general case}
       
   163 \begin{block}{}
       
   164 $$\bc_k = \set{\mathfig{0.4}{tempkw/blobkdiagram}}$$
       
   165 $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by pasting diagrams that evaluate to zero.
       
   166 \end{block}
       
   167 \begin{block}{}
       
   168 \vspace{-2mm}
       
   169 $$d_k : \bc_k \to \bc_{k-1} = {\textstyle \sum_i} (-1)^i (\text{erase blob $i$})$$
       
   170 \end{block}
       
   171 \end{frame}
       
   172 
       
   173 \section{Properties}
       
   174 \begin{frame}{An action of $\CH{\cM}$}
       
   175 \begin{thm}
       
   176 There's a chain map
       
   177 $$\CH{\cM} \tensor \bc_*(\cM) \to \bc_*(\cM).$$
       
   178 which is associative up to homotopy, and compatible with gluing.
       
   179 \end{thm}
       
   180 \begin{block}{}
       
   181 Taking $H_0$, this is the mapping class group acting on a TQFT skein module.
       
   182 \end{block}
       
   183 \end{frame}
       
   184 
       
   185 \begin{frame}{Gluing}
       
   186 \begin{block}{$\bc_*(Y \times [0,1])$ is naturally an $A_\infty$ category}
       
   187 \begin{itemize}
       
   188 \item[$m_2$:] gluing $[0,1] \simeq [0,1] \cup [0,1]$
       
   189 \item[$m_k$:] reparametrising $[0,1]$
       
   190 \end{itemize}
       
   191 \end{block}
       
   192 \begin{block}{}
       
   193 If $Y \subset \bdy X$ then $\bc_*(X)$ is an $A_\infty$ module over $\bc_*(Y)$.
       
   194 \end{block}
       
   195 \begin{thm}[Gluing formula]
       
   196 When $Y \sqcup Y^{\text{op}} \subset \bdy X$,
       
   197 \vspace{-5mm}
       
   198 \[
       
   199 	\bc_*(X \bigcup_Y \selfarrow) \iso \bc_*(X) \bigotimes_{\bc_*(Y)}^{A_\infty} \selfarrow.
       
   200 \]
       
   201 \end{thm}
       
   202 In principle, we can compute blob homology from a handle decomposition, by iterated Hochschild homology.
       
   203 \end{frame}
   163 \end{document}
   204 \end{document}
   164 % ----------------------------------------------------------------
   205 % ----------------------------------------------------------------
   165 
   206