talks/20091108-Riverside/riverside1.tex
changeset 176 8c2ed3a951e0
parent 170 6785d7aa7c49
child 180 c6cf04387c76
equal deleted inserted replaced
175:8a0d4f53367b 176:8c2ed3a951e0
    11 %\setbeameroption{previous slide on second screen=right}
    11 %\setbeameroption{previous slide on second screen=right}
    12 
    12 
    13 \author[Scott Morrison]{Scott Morrison \\ \texttt{http://tqft.net/} \\ joint work with Kevin Walker}
    13 \author[Scott Morrison]{Scott Morrison \\ \texttt{http://tqft.net/} \\ joint work with Kevin Walker}
    14 \institute{UC Berkeley / Miller Institute for Basic Research}
    14 \institute{UC Berkeley / Miller Institute for Basic Research}
    15 \title{Blob homology, part $\mathbb{I}$}
    15 \title{Blob homology, part $\mathbb{I}$}
    16 \date{Homotopy Theory and Higher Algebraic Structures, UC Riverside, November 10 2009 \\ \url{http://tqft.net/UCR-blobs1}}
    16 \date{Homotopy Theory and Higher Algebraic Structures, UC Riverside, November 10 2009 \\ \begin{description}\item[slides, part $\mathbb{I}$:]\url{http://tqft.net/UCR-blobs1} \item[slides, part $\mathbb{II}$:]\url{http://tqft.net/UCR-blobs2} \item[draft:]\url{http://tqft.net/blobs}\end{description}}
    17 
    17 
    18 \begin{document}
    18 \begin{document}
    19 
    19 
    20 \frame{\titlepage}
    20 \frame{\titlepage}
    21 
    21 
    52  again covered={\opaqueness<1->{50}}
    52  again covered={\opaqueness<1->{50}}
    53 }
    53 }
    54 
    54 
    55 \node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$};
    55 \node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$};
    56 \uncover<1>{
    56 \uncover<1>{
    57 \node[blue] (skein) at (4,0) {$A(\cM; \cC)$};
    57 \node[blue] (skein) at (4,0) {$\cA(\cM; \cC)$};
    58 \node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)};
    58 \node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)};
    59 \path[->](blobs) edge node[above] {$*= 0$} (skein);
    59 \path[->](blobs) edge node[above] {$*= 0$} (skein);
    60 }
    60 }
    61 
    61 
    62 \uncover<2>{
    62 \uncover<2>{
   109 \vspace{-3mm}
   109 \vspace{-3mm}
   110 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
   110 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
   111 \end{block}
   111 \end{block}
   112 \end{frame}
   112 \end{frame}
   113 
   113 
       
   114 \begin{frame}{Background: TQFT invariants}
       
   115 \begin{defn}
       
   116 A decapitated $n+1$-dimensional TQFT associates a vector space $\cA(\cM)$ to each $n$-manifold $\cM$.
       
   117 \end{defn}
       
   118 (`decapitated': no numerical invariants of $n+1$-manifolds.)
       
   119 
       
   120 \begin{block}{}
       
   121 If the manifold has boundary, we get a category. Objects are boundary data, $\Hom{\cA(\cM)}{x}{y} = \cA(\cM; x,y)$.
       
   122 \end{block}
       
   123 
       
   124 \begin{block}{}
       
   125 We want to extend `all the way down'. The $k$-category associated to the $n-k$-manifold $\cY$ is $\cA(\cY \times B^k)$.
       
   126 \end{block}
       
   127 
       
   128 \begin{defn}
       
   129 Given an $n$-category $\cC$, the associated TQFT is 
       
   130 \vspace{-3mm}
       
   131 $$\cA(\cM) = \cF(M) / \ker{ev},$$
       
   132 
       
   133 \vspace{-3mm}
       
   134 fields modulo fields which evaluate to zero inside some ball.
       
   135 \end{defn}
       
   136 \end{frame}
       
   137 
   114 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
   138 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
   115 \begin{block}{Motivation}
   139 \begin{block}{Motivation}
   116 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $A(\cM,; \cC)$.
   140 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $\cA(\cM,; \cC)$.
   117 \end{block}
   141 \end{block}
   118 
   142 
   119 \begin{block}{}
   143 \begin{block}{}
   120 \center
   144 \center
   121 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary pasting diagrams on $\cM$.
   145 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary pasting diagrams on $\cM$.
   159 \end{block}
   183 \end{block}
   160 \end{frame}
   184 \end{frame}
   161 
   185 
   162 \begin{frame}{Definition, general case}
   186 \begin{frame}{Definition, general case}
   163 \begin{block}{}
   187 \begin{block}{}
   164 $$\bc_k = \set{\mathfig{0.4}{tempkw/blobkdiagram}}$$
   188 $$\bc_k = \set{\roundframe{\mathfig{0.7}{definition/k-blobs}}}$$
   165 $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by pasting diagrams that evaluate to zero.
   189 $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by pasting diagrams that evaluate to zero.
   166 \end{block}
   190 \end{block}
   167 \begin{block}{}
   191 \begin{block}{}
   168 \vspace{-2mm}
   192 \vspace{-2mm}
   169 $$d_k : \bc_k \to \bc_{k-1} = {\textstyle \sum_i} (-1)^i (\text{erase blob $i$})$$
   193 $$d_k : \bc_k \to \bc_{k-1} = {\textstyle \sum_i} (-1)^i (\text{erase blob $i$})$$
   170 \end{block}
   194 \end{block}
   171 \end{frame}
   195 \end{frame}
   172 
   196 
   173 \section{Properties}
   197 \section{Properties}
       
   198 \begin{frame}{Hochschild homology}
       
   199 \begin{block}{TQFT on $S^1$ is `coinvariants'}
       
   200 \vspace{-3mm}
       
   201 $$\cA(S^1, A) = \Complex\set{\roundframe{\mathfig{0.1}{hochschild/m-a-b}}}\scalebox{2}{$/$}\set{\roundframe{\mathfig{0.065}{hochschild/ma}} - \roundframe{\mathfig{0.12}{hochschild/m-a}}} = A/(ab-ba)$$
       
   202 \end{block}
       
   203 \begin{block}{}
       
   204 The Hochschild complex is `coinvariants of the bar resolution'
       
   205 \vspace{-2mm}
       
   206 $$ \cdots \to A \tensor A \tensor A \to A \tensor A \xrightarrow{m \tensor a \mapsto ma-am} A$$
       
   207 \end{block}
       
   208 \begin{thm}[$ \HC_*(A) \iso \bc_*(S^1; A)$]
       
   209 $$m \tensor a \mapsto
       
   210 \roundframe{\mathfig{0.35}{hochschild/1-chains}}
       
   211 $$
       
   212 \vspace{-5mm}
       
   213 \begin{align*}
       
   214 u_1 & = \mathfig{0.05}{hochschild/u_1-1} - \mathfig{0.05}{hochschild/u_1-2} & u_2  &= \mathfig{0.05}{hochschild/u_2-1} - \mathfig{0.05}{hochschild/u_2-2} 
       
   215 \end{align*}
       
   216 \end{thm}
       
   217 \end{frame}
       
   218 
   174 \begin{frame}{An action of $\CH{\cM}$}
   219 \begin{frame}{An action of $\CH{\cM}$}
   175 \begin{thm}
   220 \begin{thm}
   176 There's a chain map
   221 There's a chain map
   177 $$\CH{\cM} \tensor \bc_*(\cM) \to \bc_*(\cM).$$
   222 $$\CH{\cM} \tensor \bc_*(\cM) \to \bc_*(\cM).$$
   178 which is associative up to homotopy, and compatible with gluing.
   223 which is associative up to homotopy, and compatible with gluing.