talks/20100625-StonyBrook/categorification.tex
changeset 380 6876295aec26
parent 379 6caac26b5c29
child 388 eec4b1f9cfc2
equal deleted inserted replaced
379:6caac26b5c29 380:6876295aec26
    75 }
    75 }
    76 
    76 
    77 \end{tikzpicture}
    77 \end{tikzpicture}
    78 \end{frame}
    78 \end{frame}
    79 
    79 
       
    80 \begin{frame}{$n$-categories}
       
    81 \begin{block}{There are many definitions of $n$-categories!}
       
    82 For most of what follows, I'll draw $2$-dimensional pictures and rely on your intuition for pivotal $2$-categories. 
       
    83 \end{block}
       
    84 \begin{block}{We have another definition!}
       
    85 \emph{Many axioms}; geometric examples are easy, algebraic ones hard.
       
    86 \begin{itemize}
       
    87 %\item A set $\cC(B^k)$ for every $k$-ball, $0 \leq k < n$.
       
    88 \item A vector space $\cC(B^n)$ for every $n$-ball $B$.
       
    89 %\item From these, inductively
       
    90 %\begin{itemize}
       
    91 %\item define a set $\cC(S^k)$ for each $k$-sphere, $0 \leq k < n$,
       
    92 %\item require a map $\cC(B^k) \to \cC(S^{k-1})$.
       
    93 %\end{itemize}
       
    94 \item An associative gluing map: with $B = \bigcup_i B_i$, balls glued together to form a ball,
       
    95 $$\bigotimes \cC(B_i) \to \cC(B)$$
       
    96 (the $\tensor$ is fibered over `boundary restriction' maps).
       
    97 \item ...
       
    98 \end{itemize}
       
    99 \end{block}
       
   100 \end{frame}
       
   101 
       
   102 \begin{frame}{Cellulations of manifolds}
       
   103 \begin{block}{}
       
   104 Consider $\cell(M)$, the category of cellulations of a manifold $M$, with morphisms `antirefinements'.
       
   105 \end{block}
       
   106 \vspace{-4mm}
       
   107 $$\mathfig{.35}{ncat/zz2}$$
       
   108 \vspace{-4mm}
       
   109 \begin{block}{}
       
   110 An $n$-category $\cC$ gives a functor from $\cell(M)$ to vector spaces.
       
   111 \begin{description}
       
   112 \item[objects] send a cellulation to the product of $\cC$ on each top-cell, restricting to the subset where boundaries agree
       
   113 \item[morphisms] send an antirefinement to the appropriate gluing map.
       
   114 \end{description}
       
   115 \end{block}
       
   116 \end{frame}
       
   117 
       
   118 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline=-2pt]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
       
   119 
       
   120 \section{Definition}
       
   121 \begin{frame}{Fields}
       
   122 \begin{block}{}
       
   123 A field on $\cM^n$ is a choice of cellulation and a choice of $n$-morphism for each top-cell.
       
   124 %$$\cF(\cM) = \bigoplus_{\cX \in \cell(M)} \bigotimes_{B \in \cX} \cC(B)$$
       
   125 \end{block}
       
   126 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
       
   127 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF\left(T^2\right)$$
       
   128 \end{example}
       
   129 \begin{block}{}
       
   130 Given a field on a ball, we can evaluate it to a morphism using the gluing map. We call the kernel the \emph{null fields}.
       
   131 \vspace{-3mm}
       
   132 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
       
   133 \end{block}
       
   134 \end{frame}
       
   135 
       
   136 \begin{frame}{Background: TQFT invariants}
       
   137 \begin{defn}
       
   138 We associate to an $n$-manifold $\cM$ the skein module
       
   139 \vspace{-1mm}
       
   140 $$\cA(\cM) = \cF(\cM) / \ker{ev},\vspace{-1mm}$$
       
   141 fields modulo fields which evaluate to zero inside some ball.
       
   142 \end{defn}
       
   143 Equivalently, $\cA(\cM)$ is the colimit of $\cC$ along $\cell(M)$.
       
   144 
       
   145 \vspace{4mm}
       
   146 %\begin{itemize}
       
   147 %\item We can also associate a $k$-category to an $n-k$-manifold.
       
   148 %\item We don't assign a number to an $n+1$-manifold (a `decapitated' extended TQFT).
       
   149 %\end{itemize}
       
   150 $\cA(Y \times [0,1])$ is a $1$-category, and when $Y \subset \bdy X$, $\cA(X)$ is a module over $\cA(Y \times [0,1])$.
       
   151 \begin{thm}[Gluing formula]
       
   152 When $Y \sqcup Y^{\text{op}} \subset \bdy X$,
       
   153 \vspace{-1mm}
       
   154 \[
       
   155 	\cA(X \bigcup_Y \selfarrow) \iso \cA(X) \bigotimes_{\cA(Y \times [0,1])} \selfarrow.
       
   156 \]
       
   157 \end{thm}
       
   158 \end{frame}
       
   159 
    80 \begin{frame}{Motivation: Khovanov homology as a $4$d TQFT}
   160 \begin{frame}{Motivation: Khovanov homology as a $4$d TQFT}
    81 \begin{thm}
   161 \begin{thm}
    82 Khovanov homology gives a $4$-category:
   162 Khovanov homology gives a $4$-category:
    83 \begin{description}
   163 \begin{description}
    84 \item[3-morphisms] tangles, with the usual $3$ operations,
   164 \item[3-morphisms] tangles, with the usual $3$ operations,
    91 \end{block}
   171 \end{block}
    92 \end{frame}
   172 \end{frame}
    93 
   173 
    94 \begin{frame}{Computations are hard}
   174 \begin{frame}{Computations are hard}
    95 \begin{block}{}
   175 \begin{block}{}
    96 The corresponding $4$-manifold invariant is hard to compute, because the TQFT skein module construction breaks the exact triangle for resolving a crossing.
   176 This invariant is hard to compute, because the TQFT skein module construction breaks the exact triangle for resolving a crossing.
    97 \vspace{-0.3cm}
   177 \vspace{-0.3cm}
    98 \begin{align*}
   178 \begin{align*}
    99 \begin{tikzpicture}
   179 \begin{tikzpicture}
   100 \node(a) at (0,0) {$Kh\left(\begin{tikzpicture}[baseline=-2.5pt, scale=0.5, line width=1.5pt]
   180 \node(a) at (0,0) {$Kh\left(\begin{tikzpicture}[baseline=-2.5pt, scale=0.5, line width=1.5pt]
   101 \node[outer sep=-1pt] (x) at (0,0){};
   181 \node[outer sep=-1pt] (x) at (0,0){};
   146 %$$\cA(W, L; Kh) = H_0(\bc_*(W, L; Kh))$$
   226 %$$\cA(W, L; Kh) = H_0(\bc_*(W, L; Kh))$$
   147 by first computing the entire blob homology.
   227 by first computing the entire blob homology.
   148 \end{conj}
   228 \end{conj}
   149 \end{frame}
   229 \end{frame}
   150 
   230 
   151 \begin{frame}{$n$-categories}
       
   152 \begin{block}{Defining $n$-categories is fraught with difficulties}
       
   153 For now, I'm not going to go into details; I'll draw $2$-dimensional pictures, and rely on your intuition for pivotal $2$-categories.
       
   154 \end{block}
       
   155 \begin{block}{}
       
   156 Later, I'll explain the notions of `topological $n$-categories' and `$A_\infty$ $n$-categories'.
       
   157 \end{block}
       
   158 
       
   159 \begin{block}{}
       
   160 \begin{itemize}
       
   161 \item
       
   162 Defining $n$-categories: a choice of `shape' for morphisms.
       
   163 \item
       
   164 We allow all shapes! A vector space for every ball.
       
   165 \item
       
   166 `Strong duality' is integral in our definition.
       
   167 \end{itemize}
       
   168 \end{block}
       
   169 \end{frame}
       
   170 
       
   171 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline=-2pt]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
       
   172 
       
   173 \section{Definition}
       
   174 \begin{frame}{Fields and pasting diagrams}
       
   175 \begin{block}{Pasting diagrams}
       
   176 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
       
   177 \end{block}
       
   178 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
       
   179 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF\left(T^2\right)$$
       
   180 \end{example}
       
   181 \begin{block}{}
       
   182 Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}.
       
   183 \vspace{-3mm}
       
   184 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
       
   185 \end{block}
       
   186 \end{frame}
       
   187 
       
   188 \begin{frame}{Background: TQFT invariants}
       
   189 \begin{defn}
       
   190 A decapitated $n+1$-dimensional TQFT associates a vector space $\cA(\cM)$ to each $n$-manifold $\cM$.
       
   191 \end{defn}
       
   192 (`decapitated': no numerical invariants of $n+1$-manifolds.)
       
   193 
       
   194 \begin{block}{}
       
   195 If the manifold has boundary, we get a category. Objects are boundary data, $\Hom{\cA(\cM)}{x}{y} = \cA(\cM; x,y)$.
       
   196 \end{block}
       
   197 
       
   198 \begin{block}{}
       
   199 We want to extend `all the way down'. The $k$-category associated to the $n-k$-manifold $\cY$ is $\cA(\cY \times B^k)$.
       
   200 \end{block}
       
   201 
       
   202 \begin{defn}
       
   203 Given an $n$-category $\cC$, the associated TQFT is 
       
   204 \vspace{-3mm}
       
   205 $$\cA(\cM) = \cF(M) / \ker{ev},$$
       
   206 
       
   207 \vspace{-3mm}
       
   208 fields modulo fields which evaluate to zero inside some ball.
       
   209 \end{defn}
       
   210 \end{frame}
       
   211 
   231 
   212 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
   232 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
   213 \begin{block}{Motivation}
   233 \begin{block}{Motivation}
   214 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $\cA(\cM,; \cC)$.
   234 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $\cA(\cM; \cC)$.
   215 \end{block}
   235 \end{block}
   216 
   236 
   217 \mode<handout>{\vspace{-5mm}}
   237 \mode<handout>{\vspace{-5mm}}
   218 \begin{block}{}
   238 \begin{block}{}
   219 \center
   239 \center
   220 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary pasting diagrams on $\cM$.
   240 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary fields on $\cM$.
   221 \end{block}
   241 \end{block}
   222 
   242 
   223 \begin{block}{}
   243 \begin{block}{}
   224 \vspace{-1mm}
   244 \vspace{-1mm}
   225 $$\bc_1(\cM; \cC) = \Complex\setcr{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$
   245 $$\bc_1(\cM; \cC) = \Complex\setcr{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$
   262 \end{frame}
   282 \end{frame}
   263 
   283 
   264 \begin{frame}{Definition, general case}
   284 \begin{frame}{Definition, general case}
   265 \begin{block}{}
   285 \begin{block}{}
   266 $$\bc_k = \Complex\set{\roundframe{\mathfig{0.7}{definition/k-blobs}}}$$
   286 $$\bc_k = \Complex\set{\roundframe{\mathfig{0.7}{definition/k-blobs}}}$$
   267 $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by pasting diagrams that evaluate to zero.
   287 $k$ blobs, properly nested or disjoint, with ``innermost'' blobs labelled by fields that evaluate to zero.
   268 \end{block}
   288 \end{block}
   269 \begin{block}{}
   289 \begin{block}{}
   270 \vspace{-2mm}
   290 \vspace{-2mm}
   271 $$d_k : \bc_k \to \bc_{k-1} = {\textstyle \sum_i} (-1)^i (\text{erase blob $i$})$$
   291 $$d_k : \bc_k \to \bc_{k-1} = {\textstyle \sum_i} (-1)^i (\text{erase blob $i$})$$
   272 \end{block}
   292 \end{block}
   304 \begin{block}{}
   324 \begin{block}{}
   305 Taking $H_0$, this is the mapping class group acting on a TQFT skein module.
   325 Taking $H_0$, this is the mapping class group acting on a TQFT skein module.
   306 \end{block}
   326 \end{block}
   307 \end{frame}
   327 \end{frame}
   308 
   328 
       
   329 \mode<beamer>{
       
   330 \begin{frame}{An action of $\CH{\cM}$}
       
   331 \begin{proof}
       
   332 \begin{description}
       
   333 \item[Step 1] If $\cM=B^n$ or a union of balls, there's a unique chain map, since $\bc_*(B^n; \cC) \htpy \cC$ is concentrated in homological degree $0$.
       
   334 \item[Step 2] Fix an open cover $\cU$ of balls. \\ A family of homeomorphisms $P^k \to \Homeo(\cM)$ can be broken up in into pieces, each of which is supported in at most $k$ open sets from $\cU$. \qedhere
       
   335 \end{description}
       
   336 \end{proof}
       
   337 \end{frame}
       
   338 }
       
   339 
   309 \begin{frame}{Gluing}
   340 \begin{frame}{Gluing}
   310 \begin{block}{$\bc_*(Y \times [0,1])$ is naturally an $A_\infty$ category}
   341 \begin{block}{$\bc_*(Y \times [0,1])$ is naturally an $A_\infty$ category}
   311 \begin{itemize}
   342 \begin{description}
   312 \item[$m_2$:] gluing $[0,1] \simeq [0,1] \cup [0,1]$
   343 \item[multiplication ($m_2$):] gluing $[0,1] \simeq [0,1] \cup [0,1]$
   313 \item[$m_k$:] reparametrising $[0,1]$
   344 \item[associativity up to homotopy ($m_k$):] reparametrising $[0,1]$ using the action of $\CH{[0,1]}$.
   314 \end{itemize}
   345 \end{description}
   315 \end{block}
   346 \end{block}
   316 \begin{block}{}
   347 \begin{block}{}
   317 If $Y \subset \bdy X$ then $\bc_*(X)$ is an $A_\infty$ module over $\bc_*(Y)$.
   348 If $Y \subset \bdy X$ then $\bc_*(X)$ is an $A_\infty$ module over $\bc_*(Y)$.
   318 \end{block}
   349 \end{block}
   319 \begin{thm}[Gluing formula]
   350 \begin{thm}[Gluing formula]
   342 \end{block}
   373 \end{block}
   343 \end{frame}
   374 \end{frame}
   344 
   375 
   345 \begin{frame}{Maps to a space}
   376 \begin{frame}{Maps to a space}
   346 \begin{block}{}
   377 \begin{block}{}
   347 Fix a target space $T$. There is an $A_\infty$ $n$-category $\pi_{\leq n}^\infty(T)$ defined by
   378 Fix a target space $\cT$. There is an $A_\infty$ $n$-category $\pi_{\leq n}^\infty(\cT)$ defined by
   348 $$\pi_{\leq n}^\infty(T)(B) = C_*(\Maps(B\to T)).$$
   379 $$\pi_{\leq n}^\infty(\cT)(B) = C_*(\Maps(B\to \cT)).$$
   349 \end{block}
   380 \end{block}
   350 \begin{thm}
   381 \begin{thm}
   351 The blob complex recovers mapping spaces:
   382 The blob complex recovers mapping spaces:
   352 $$\bc_*(M; \pi_{\leq n}^\infty(T)) \iso C_*(\Maps(M \to T))$$
   383 $$\bc_*(\cM; \pi_{\leq n}^\infty(\cT)) \iso C_*(\Maps(\cM \to \cT))$$
   353 \end{thm}
   384 \end{thm}
   354 This generalizes  a result of Lurie: if $T$ is $n-1$ connected, $\pi_{\leq n}^\infty(T)$ is an $E_n$-algebra and the blob complex is the same as his topological chiral homology.
   385 This generalizes  a result of Lurie: if $\cT$ is $n-1$ connected, $\pi_{\leq n}^\infty(\cT)$ is an $E_n$-algebra and the blob complex is the same as his topological chiral homology.
   355 \end{frame}
   386 \end{frame}
   356 
   387 
   357 \end{document}
   388 \end{document}
   358 % ----------------------------------------------------------------
   389 % ----------------------------------------------------------------
   359 
   390