talks/20100625-StonyBrook/categorification.tex
changeset 388 eec4b1f9cfc2
parent 380 6876295aec26
child 394 eac3c57c808a
equal deleted inserted replaced
380:6876295aec26 388:eec4b1f9cfc2
    11 %\setbeameroption{previous slide on second screen=right}
    11 %\setbeameroption{previous slide on second screen=right}
    12 
    12 
    13 \author[Scott Morrison]{Scott Morrison \\ \texttt{http://tqft.net/} \\ joint work with Kevin Walker}
    13 \author[Scott Morrison]{Scott Morrison \\ \texttt{http://tqft.net/} \\ joint work with Kevin Walker}
    14 \institute{UC Berkeley / Miller Institute for Basic Research}
    14 \institute{UC Berkeley / Miller Institute for Basic Research}
    15 \title{The blob complex}
    15 \title{The blob complex}
    16 \date{Low-Dimensional Topology and Categorification, \\Stony Brook University, June 21-25 2010 \\ \begin{description}\item[slides:]\url{http://tqft.net/sunysb-blobs} \item[paper:]\url{http://tqft.net/blobs}\end{description}}
    16 \date{
       
    17 Low-Dimensional Topology and Categorification, \\
       
    18 Stony Brook University, June 21-25 2010 \\
       
    19 \begin{description}
       
    20 	\item[slides:]\url{http://tqft.net/talks}
       
    21 	\item[paper:]\url{http://tqft.net/blobs}
       
    22 %	\item[shameless plug:]\url{http://mathoverflow.net}
       
    23 \end{description}
       
    24 }
       
    25 
       
    26 \listfiles
    17 
    27 
    18 \begin{document}
    28 \begin{document}
    19 
    29 
    20 \frame{\titlepage}
    30 \frame{\titlepage}
    21 
       
    22 \beamertemplatetransparentcovered 
       
    23 
       
    24 \setbeamertemplate{navigation symbols}{}  % no navigation symbols, please
       
    25 
       
    26 
       
    27 \mode<beamer>{\setbeamercolor{block title}{bg=green!40!black}}
       
    28 
       
    29 \beamersetuncovermixins 
       
    30 {\opaqueness<1->{60}} 
       
    31 {} 
       
    32 
       
    33 
    31 
    34 
    32 
    35 \section{Overview}
    33 \section{Overview}
    36 
    34 
    37    \begin{frame}<beamer>
    35    \begin{frame}<beamer>
    75 }
    73 }
    76 
    74 
    77 \end{tikzpicture}
    75 \end{tikzpicture}
    78 \end{frame}
    76 \end{frame}
    79 
    77 
       
    78 \section{TQFTs}
       
    79 
    80 \begin{frame}{$n$-categories}
    80 \begin{frame}{$n$-categories}
    81 \begin{block}{There are many definitions of $n$-categories!}
    81 \begin{block}{There are many definitions of $n$-categories!}
    82 For most of what follows, I'll draw $2$-dimensional pictures and rely on your intuition for pivotal $2$-categories. 
    82 For most of what follows, I'll draw $2$-dimensional pictures and rely on your intuition for pivotal $2$-categories. 
    83 \end{block}
    83 \end{block}
    84 \begin{block}{We have another definition!}
    84 \begin{block}{We have another definition: \emph{topological $n$-categories}}
    85 \emph{Many axioms}; geometric examples are easy, algebraic ones hard.
       
    86 \begin{itemize}
    85 \begin{itemize}
    87 %\item A set $\cC(B^k)$ for every $k$-ball, $0 \leq k < n$.
    86 %\item A set $\cC(B^k)$ for every $k$-ball, $0 \leq k < n$.
    88 \item A vector space $\cC(B^n)$ for every $n$-ball $B$.
    87 \item A vector space $\cC(B^n)$ for every $n$-ball $B$.
    89 %\item From these, inductively
    88 %\item From these, inductively
    90 %\begin{itemize}
    89 %\begin{itemize}
    95 $$\bigotimes \cC(B_i) \to \cC(B)$$
    94 $$\bigotimes \cC(B_i) \to \cC(B)$$
    96 (the $\tensor$ is fibered over `boundary restriction' maps).
    95 (the $\tensor$ is fibered over `boundary restriction' maps).
    97 \item ...
    96 \item ...
    98 \end{itemize}
    97 \end{itemize}
    99 \end{block}
    98 \end{block}
       
    99 These are easy to check for geometric examples, hard to check for algebraic examples.
   100 \end{frame}
   100 \end{frame}
   101 
   101 
   102 \begin{frame}{Cellulations of manifolds}
   102 \begin{frame}{Cellulations of manifolds}
   103 \begin{block}{}
   103 \begin{block}{}
   104 Consider $\cell(M)$, the category of cellulations of a manifold $M$, with morphisms `antirefinements'.
   104 Consider $\cell(M)$, the category of cellulations of a manifold $M$, with morphisms `antirefinements'.
   115 \end{block}
   115 \end{block}
   116 \end{frame}
   116 \end{frame}
   117 
   117 
   118 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline=-2pt]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
   118 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline=-2pt]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
   119 
   119 
   120 \section{Definition}
       
   121 \begin{frame}{Fields}
   120 \begin{frame}{Fields}
   122 \begin{block}{}
   121 \begin{block}{}
   123 A field on $\cM^n$ is a choice of cellulation and a choice of $n$-morphism for each top-cell.
   122 A field on $\cM^n$ is a choice of cellulation and a choice of $n$-morphism for each top-cell (with matching boundaries).
   124 %$$\cF(\cM) = \bigoplus_{\cX \in \cell(M)} \bigotimes_{B \in \cX} \cC(B)$$
   123 %$$\cF(\cM) = \bigoplus_{\cX \in \cell(M)} \bigotimes_{B \in \cX} \cC(B)$$
   125 \end{block}
   124 \end{block}
   126 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
   125 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
   127 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF\left(T^2\right)$$
   126 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF\left(T^2\right)$$
   128 \end{example}
   127 \end{example}
   226 %$$\cA(W, L; Kh) = H_0(\bc_*(W, L; Kh))$$
   225 %$$\cA(W, L; Kh) = H_0(\bc_*(W, L; Kh))$$
   227 by first computing the entire blob homology.
   226 by first computing the entire blob homology.
   228 \end{conj}
   227 \end{conj}
   229 \end{frame}
   228 \end{frame}
   230 
   229 
   231 
   230 \section{Definition}
   232 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
   231 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
   233 \begin{block}{Motivation}
   232 \begin{block}{Motivation}
   234 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $\cA(\cM; \cC)$.
   233 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $\cA(\cM; \cC)$.
   235 \end{block}
   234 \end{block}
   236 
   235 
   294 
   293 
   295 \section{Properties}
   294 \section{Properties}
   296 \begin{frame}{Hochschild homology}
   295 \begin{frame}{Hochschild homology}
   297 \begin{block}{TQFT on $S^1$ is `coinvariants'}
   296 \begin{block}{TQFT on $S^1$ is `coinvariants'}
   298 \vspace{-3mm}
   297 \vspace{-3mm}
   299 $$\cA(S^1, A) = \Complex\set{\roundframe{\mathfig{0.1}{hochschild/m-a-b}}}\scalebox{2}{$/$}\set{\roundframe{\mathfig{0.065}{hochschild/ma}} - \roundframe{\mathfig{0.12}{hochschild/m-a}}} = A/(ab-ba)$$
   298 $$\cA(S^1, A) = \Complex\set{\roundframe{
       
   299 \tikz{\draw (0,0) circle (0.4); \foreach \q/\l in {90/a, 210/b, 330/c} {\draw[fill=red] (\q:0.4) circle (0.075); \node at (\q:0.6) {\l};}}
       
   300 }}
       
   301 \scalebox{2}{$/$}
       
   302 \set{\roundframe{\tikz{\draw (-30:0.4) arc (-30:210:0.4); \draw[fill=red] (90:0.4) circle (0.075); \node at (90:0.65) {$ab$};}} - \roundframe{
       
   303 \tikz{\draw (-30:0.4) arc (-30:210:0.4); \foreach \q/\l in {120/a, 60/b} {\draw[fill=red] (\q:0.4) circle (0.075); \node at (\q:0.65) {\l};}}}} = A/(ab-ba)$$
   300 \end{block}
   304 \end{block}
   301 \mode<handout>{\vspace{-3mm}}
   305 \mode<handout>{\vspace{-3mm}}
   302 \begin{block}{}
   306 \begin{block}{Blob homology on $S^1$ is Hochschild homology}
   303 The Hochschild complex is `coinvariants of the bar resolution'
   307 The Hochschild complex is `coinvariants of the bar resolution'
   304 \vspace{-2mm}
   308 \vspace{-2mm}
   305 $$ \cdots \to A \tensor A \tensor A \to A \tensor A \xrightarrow{m \tensor a \mapsto ma-am} A$$
   309 $$ \cdots \to A \tensor A \tensor A \to A \tensor A \xrightarrow{m \tensor a \mapsto ma-am} A$$
   306 \end{block}
   310 
   307 \begin{thm}[$ \HC_*(A) \iso \bc_*(S^1; A)$]
   311 We check universal properties, as it's hard to directly construct an isomorphism.
       
   312 \noop{
   308 $$m \tensor a \mapsto
   313 $$m \tensor a \mapsto
   309 \roundframe{\mathfig{0.35}{hochschild/1-chains}}
   314 \roundframe{\mathfig{0.35}{hochschild/1-chains}}
   310 $$
   315 $$
   311 \vspace{-5mm}
   316 \vspace{-5mm}
   312 \begin{align*}
   317 \begin{align*}
   313 u_1 & = \mathfig{0.05}{hochschild/u_1-1} - \mathfig{0.05}{hochschild/u_1-2} & u_2  &= \mathfig{0.05}{hochschild/u_2-1} - \mathfig{0.05}{hochschild/u_2-2} 
   318 u_1 & = \mathfig{0.05}{hochschild/u_1-1} - \mathfig{0.05}{hochschild/u_1-2} & u_2  &= \mathfig{0.05}{hochschild/u_2-1} - \mathfig{0.05}{hochschild/u_2-2} 
   314 \end{align*}
   319 \end{align*}
   315 \end{thm}
   320 }
       
   321 \end{block}
   316 \end{frame}
   322 \end{frame}
   317 
   323 
   318 \begin{frame}{An action of $\CH{\cM}$}
   324 \begin{frame}{An action of $\CH{\cM}$}
   319 \begin{thm}
   325 \begin{thm}
   320 There's a chain map
   326 There's a chain map
   321 $$\CH{\cM} \tensor \bc_*(\cM) \to \bc_*(\cM).$$
   327 $$\CH{\cM} \tensor \bc_*(\cM) \to \bc_*(\cM).$$
   322 which is associative up to homotopy, and compatible with gluing.
   328 which is associative up to homotopy, and compatible with gluing.
   323 \end{thm}
   329 \end{thm}
   324 \begin{block}{}
   330 \begin{block}{}
   325 Taking $H_0$, this is the mapping class group acting on a TQFT skein module.
   331 Taking $H_0$, this is the mapping class group acting on a TQFT skein module.
       
   332 $$H_0(\Homeo(\cM)) \tensor \cA(\cM) \to \cA(\cM).$$
   326 \end{block}
   333 \end{block}
   327 \end{frame}
   334 \end{frame}
   328 
   335 
   329 \mode<beamer>{
   336 \mode<beamer>{
   330 \begin{frame}{An action of $\CH{\cM}$}
   337 \begin{frame}{An action of $\CH{\cM}$}
   375 
   382 
   376 \begin{frame}{Maps to a space}
   383 \begin{frame}{Maps to a space}
   377 \begin{block}{}
   384 \begin{block}{}
   378 Fix a target space $\cT$. There is an $A_\infty$ $n$-category $\pi_{\leq n}^\infty(\cT)$ defined by
   385 Fix a target space $\cT$. There is an $A_\infty$ $n$-category $\pi_{\leq n}^\infty(\cT)$ defined by
   379 $$\pi_{\leq n}^\infty(\cT)(B) = C_*(\Maps(B\to \cT)).$$
   386 $$\pi_{\leq n}^\infty(\cT)(B) = C_*(\Maps(B\to \cT)).$$
       
   387 (Here $B$ is an $n$-ball.)
   380 \end{block}
   388 \end{block}
   381 \begin{thm}
   389 \begin{thm}
   382 The blob complex recovers mapping spaces:
   390 The blob complex recovers mapping spaces:
   383 $$\bc_*(\cM; \pi_{\leq n}^\infty(\cT)) \iso C_*(\Maps(\cM \to \cT))$$
   391 $$\bc_*(\cM; \pi_{\leq n}^\infty(\cT)) \iso C_*(\Maps(\cM \to \cT))$$
   384 \end{thm}
   392 \end{thm}
   385 This generalizes  a result of Lurie: if $\cT$ is $n-1$ connected, $\pi_{\leq n}^\infty(\cT)$ is an $E_n$-algebra and the blob complex is the same as his topological chiral homology.
   393 This generalizes  a result of Lurie: if $\cT$ is $n-1$ connected, $\pi_{\leq n}^\infty(\cT)$ is an $E_n$-algebra and in this special case the blob complex is presumably the same as his topological chiral homology.
   386 \end{frame}
   394 \end{frame}
   387 
   395 
   388 \end{document}
   396 \end{document}
   389 % ----------------------------------------------------------------
   397 % ----------------------------------------------------------------
   390 
   398