blob1.tex
changeset 49 75c9b874dea7
parent 48 b7ade62bea27
child 50 dd9487823529
equal deleted inserted replaced
48:b7ade62bea27 49:75c9b874dea7
  1430 Let $\Sigma^i(M)$ denote the $i$-th symmetric power of $M$, the configuration space of $i$
  1430 Let $\Sigma^i(M)$ denote the $i$-th symmetric power of $M$, the configuration space of $i$
  1431 unlabeled points in $M$.
  1431 unlabeled points in $M$.
  1432 Note that $\Sigma^0(M)$ is a point.
  1432 Note that $\Sigma^0(M)$ is a point.
  1433 Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
  1433 Let $\Sigma^\infty(M) = \coprod_{i=0}^\infty \Sigma^i(M)$.
  1434 
  1434 
  1435 Let $C_*(X)$ denote the singular chain complex of the space $X$.
  1435 Let $C_*(X, k)$ denote the singular chain complex of the space $X$ with coefficients in $k$.
  1436 
  1436 
  1437 \begin{prop}
  1437 \begin{prop}
  1438 $\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M))$.
  1438 $\bc_*(M^n, k[t])$ is homotopy equivalent to $C_*(\Sigma^\infty(M), k)$.
  1439 \end{prop}
  1439 \end{prop}
  1440 
  1440 
  1441 \begin{proof}
  1441 \begin{proof}
  1442 To define the chain maps between the two complexes we will use the following lemma:
  1442 To define the chain maps between the two complexes we will use the following lemma:
  1443 
  1443 
  1495 \nn{still to do: show indep of choice of metric; show compositions are homotopic to the identity
  1495 \nn{still to do: show indep of choice of metric; show compositions are homotopic to the identity
  1496 (for this, might need a lemma that says we can assume that blob diameters are small)}
  1496 (for this, might need a lemma that says we can assume that blob diameters are small)}
  1497 \end{proof}
  1497 \end{proof}
  1498 
  1498 
  1499 
  1499 
       
  1500 \begin{prop}
       
  1501 The above maps are compatible with the evaluation map actions of $C_*(\Diff(M))$.
       
  1502 \end{prop}
       
  1503 
       
  1504 \begin{proof}
       
  1505 The actions agree in degree 0, and both are compatible with gluing.
       
  1506 (cf. uniqueness statement in \ref{CDprop}.)
       
  1507 \end{proof}
       
  1508 
       
  1509 \medskip
       
  1510 
       
  1511 In view of \ref{hochthm}, we have proved that $HH_*(k[t]) \cong C_*(\Sigma^\infty(S^1), k)$,
       
  1512 and that the cyclic homology of $k[t]$ is related to the action of rotations
       
  1513 on $C_*(\Sigma^\infty(S^1), k)$.
       
  1514 \nn{probably should put a more precise statement about cyclic homology and $S^1$ actions in the Hochschild section}
       
  1515 Let us check this directly.
       
  1516 
       
  1517 We can define a flow on $\Sigma^j(S^1)$ by having the points repel each other.
       
  1518 The fixed points of this flow are the equally spaced configurations.
       
  1519 This defines a map from $\Sigma^j(S^1)$ to $S^1/j$ ($S^1$ modulo a $2\pi/j$ rotation.).
       
  1520 The fiber of this map is $\Delta^{j-1}$, the $(j-1)$-simplex, 
       
  1521 and the holonomy of the $\Delta^{j-1}$ bundle
       
  1522 over $S^1$ is the cyclic permutation of its $j$ vertices.
       
  1523 
       
  1524 
       
  1525 
       
  1526 
       
  1527 
       
  1528 \nn{...}
       
  1529 
  1500 
  1530 
  1501 
  1531 
  1502 
  1532 
  1503 \appendix
  1533 \appendix
  1504 
  1534