text/intro.tex
changeset 191 8c2c330e87f2
parent 187 4067c74547bb
child 217 d13df7f3b2de
equal deleted inserted replaced
190:16efb5711c6f 191:8c2c330e87f2
   181 \begin{equation*}
   181 \begin{equation*}
   182 \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).}
   182 \xymatrix{\bc_*^{\cC}(S^1) \ar[r]^(0.4){\iso}_(0.4){\text{qi}} & \HC_*(\cC).}
   183 \end{equation*}
   183 \end{equation*}
   184 \end{property}
   184 \end{property}
   185 
   185 
   186 Here $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$.
   186 In the following $\CH{X}$ is the singular chain complex of the space of homeomorphisms of $X$, fixed on $\bdy X$.
   187 \begin{property}[$C_*(\Homeo(-))$ action]
   187 \begin{property}[$C_*(\Homeo(-))$ action]
   188 \label{property:evaluation}%
   188 \label{property:evaluation}%
   189 There is a chain map
   189 There is a chain map
   190 \begin{equation*}
   190 \begin{equation*}
   191 \ev_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X).
   191 \ev_X: \CH{X} \tensor \bc_*(X) \to \bc_*(X).
   192 \end{equation*}
   192 \end{equation*}
   193 
   193 
   194 Restricted to $C_0(\Homeo(X))$ this is just the action of homeomorphisms described in Property \ref{property:functoriality}. Further, for
   194 Restricted to $C_0(\Homeo(X))$ this is just the action of homeomorphisms described in Property \ref{property:functoriality}. 
   195 any codimension $1$-submanifold $Y \subset X$ dividing $X$ into $X_1 \cup_Y X_2$, the following diagram
       
   196 (using the gluing maps described in Property \ref{property:gluing-map}) commutes.
       
   197 \begin{equation*}
       
   198 \xymatrix{
       
   199      \CH{X} \otimes \bc_*(X) \ar[r]^{\ev_X}    & \bc_*(X) \\
       
   200      \CH{X_1} \otimes \CH{X_2} \otimes \bc_*(X_1) \otimes \bc_*(X_2)
       
   201         \ar@/_4ex/[r]_{\ev_{X_1} \otimes \ev_{X_2}}  \ar[u]^{\gl^{\Homeo}_Y \otimes \gl_Y}  &
       
   202             \bc_*(X_1) \otimes \bc_*(X_2) \ar[u]_{\gl_Y}
       
   203 }
       
   204 \end{equation*}
       
   205 \nn{should probably say something about associativity here (or not?)}
   195 \nn{should probably say something about associativity here (or not?)}
   206 Further, for
   196 
       
   197 For
   207 any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram
   198 any codimension $0$-submanifold $Y \sqcup Y^\text{op} \subset \bdy X$ the following diagram
   208 (using the gluing maps described in Property \ref{property:gluing-map}) commutes.
   199 (using the gluing maps described in Property \ref{property:gluing-map}) commutes.
   209 \begin{equation*}
   200 \begin{equation*}
   210 \xymatrix@C+2cm{
   201 \xymatrix@C+2cm{
   211      \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]^<<<<<<<<<<<<{\ev_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow) \\
   202      \CH{X \bigcup_Y \selfarrow} \otimes \bc_*(X \bigcup_Y \selfarrow) \ar[r]^<<<<<<<<<<<<{\ev_{(X \bigcup_Y \scalebox{0.5}{\selfarrow})}}    & \bc_*(X \bigcup_Y \selfarrow) \\
   212      \CH{X} \otimes \bc_*(X)
   203      \CH{X} \otimes \bc_*(X)
   213         \ar[r]_{\ev_{X}}  \ar[u]^{\gl^{\Homeo}_Y \otimes \gl_Y}  &
   204         \ar[r]_{\ev_{X}}  \ar[u]^{\gl^{\Homeo}_Y \otimes \gl_Y}  &
   214             \bc_*(X) \ar[u]_{\gl_Y}
   205             \bc_*(X) \ar[u]_{\gl_Y}
   215 }
   206 }
   216 \end{equation*}
   207 \end{equation*}
   217 \end{property}
   208 
       
   209 \nn{unique up to homotopy?}
       
   210 \end{property}
       
   211 
       
   212 Since the blob complex is functorial in the manifold $X$, we can use this to build a chain map
       
   213 $$ev_{X \to Y} : \CH{X \to Y} \tensor \bc_*(X) \to \bc_*(Y)$$
       
   214 satisfying corresponding conditions.
   218 
   215 
   219 In \S \ref{sec:ncats} we introduce the notion of topological $n$-categories, from which we can construct systems of fields, as well as the notion of an $A_\infty$ $n$-category.
   216 In \S \ref{sec:ncats} we introduce the notion of topological $n$-categories, from which we can construct systems of fields, as well as the notion of an $A_\infty$ $n$-category.
   220 
   217 
   221 \begin{property}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category]
   218 \begin{property}[Blob complexes of (products with) balls form an $A_\infty$ $n$-category]
   222 \label{property:blobs-ainfty}
   219 \label{property:blobs-ainfty}