text/ncat.tex
changeset 331 956f373f6ff6
parent 329 eb03c4a92f98
parent 330 8dad3dc7023b
child 334 7b632b53eb45
equal deleted inserted replaced
329:eb03c4a92f98 331:956f373f6ff6
  1250 \nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
  1250 \nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
  1251 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
  1251 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
  1252 we have
  1252 we have
  1253 \begin{eqnarray*}
  1253 \begin{eqnarray*}
  1254 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
  1254 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
  1255 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
  1255 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl''(g((\bd_0\olD)\ot \gl'(x\ot\cbar'))\ot\cbar'') .
  1256 \end{eqnarray*}
  1256 \end{eqnarray*}
  1257 \nn{put in signs, rearrange terms to match order in previous formulas}
  1257 \nn{put in signs, rearrange terms to match order in previous formulas}
  1258 Here $\gl$ denotes the module action in $\cY_\cC$.
  1258 Here $\gl''$ denotes the module action in $\cY_\cC$
       
  1259 and $\gl'$ denotes the module action in $\cX_\cC$.
  1259 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
  1260 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
  1260 
  1261 
  1261 Note that if $\bd g = 0$, then each 
  1262 Note that if $\bd g = 0$, then each 
  1262 \[
  1263 \[
  1263 	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
  1264 	g(\olD\ot -) : \cX(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) \to \cY(I_1\cup\cdots\cup I_{p-1})
  1290 Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
  1291 Trivially, we have $(\bd g)(\olD\ot x \ot \cbar) = 0$ if $\deg(\olD) > 1$.
  1291 If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
  1292 If $\deg(\olD) = 1$, $(\bd g) = 0$ is equivalent to the fact that $h$ commutes with gluing.
  1292 If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
  1293 If $\deg(\olD) = 0$, $(\bd g) = 0$ is equivalent to the fact 
  1293 that each $h_K$ is a chain map.
  1294 that each $h_K$ is a chain map.
  1294 
  1295 
       
  1296 We can think of a general closed element $g\in \hom_\cC(\cX_\cC \to \cY_\cC)$
       
  1297 as a collection of chain maps which commute with the module action (gluing) up to coherent homotopy.
       
  1298 \nn{ideally should give explicit examples of this in low degrees, 
       
  1299 but skip that for now.}
       
  1300 \nn{should also say something about composition of morphisms; well-defined up to homotopy, or maybe
       
  1301 should make some arbitrary choice}
  1295 \medskip
  1302 \medskip
  1296 
  1303 
  1297 Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
  1304 Given $_\cC\cZ$ and  $g: \cX_\cC \to \cY_\cC$ with $\bd g = 0$ as above, we next define a chain map
  1298 \[
  1305 \[
  1299 	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
  1306 	g\ot\id : \cX_\cC \ot {}_\cC\cZ \to \cY_\cC \ot {}_\cC\cZ .
  1300 \]
  1307 \]
  1301 \nn{this is fairly straightforward, but the details are messy enough that I'm inclined
  1308 
  1302 to postpone writing it up, in the hopes that I'll think of a better way to organize things.}
  1309 \nn{not sure whether to do low degree examples or try to state the general case; ideally both,
  1303 
  1310 but maybe just low degrees for now.}
  1304 
       
  1305 
       
  1306 
       
  1307 \medskip
       
  1308 
       
  1309 
       
  1310 \nn{do we need to say anything about composing morphisms of modules?}
       
  1311 
       
  1312 \nn{should we define functors between $n$-cats in a similar way?}
       
  1313 
  1311 
  1314 
  1312 
  1315 \nn{...}
  1313 \nn{...}
  1316 
  1314 
       
  1315 
       
  1316 
       
  1317 
       
  1318 \medskip
       
  1319 
       
  1320 
       
  1321 \nn{should we define functors between $n$-cats in a similar way?  i.e.\ natural transformations
       
  1322 of the $\cC$ functors which commute with gluing only up to higher morphisms?
       
  1323 perhaps worth having both definitions available.
       
  1324 certainly the simple kind (strictly commute with gluing) arise in nature.}
  1317 
  1325 
  1318 
  1326 
  1319 
  1327 
  1320 
  1328 
  1321 
  1329