text/ncat.tex
changeset 291 9b8b474e272c
parent 288 6c1b3c954c7e
child 303 2252c53bd449
equal deleted inserted replaced
290:9bb7d314c694 291:9b8b474e272c
   582 See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
   582 See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps(M \to T))$ up to homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
   583 
   583 
   584 \begin{example}[Blob complexes of balls (with a fiber)]
   584 \begin{example}[Blob complexes of balls (with a fiber)]
   585 \rm
   585 \rm
   586 \label{ex:blob-complexes-of-balls}
   586 \label{ex:blob-complexes-of-balls}
   587 Fix an $m$-dimensional manifold $F$ and system of fields $\cE$.
   587 Fix an $n-k$-dimensional manifold $F$ and an $n$-dimensional system of fields $\cE$.
   588 We will define an $A_\infty$ $(n-m)$-category $\cC$.
   588 We will define an $A_\infty$ $k$-category $\cC$.
   589 When $X$ is a $k$-ball or $k$-sphere, with $k<n-m$, define $\cC(X) = \cE(X\times F)$.
   589 When $X$ is a $m$-ball or $m$-sphere, with $m<k$, define $\cC(X) = \cE(X\times F)$.
   590 When $X$ is an $(n-m)$-ball,
   590 When $X$ is an $k$-ball,
   591 define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
   591 define $\cC(X; c) = \bc^\cE_*(X\times F; c)$
   592 where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
   592 where $\bc^\cE_*$ denotes the blob complex based on $\cE$.
   593 \end{example}
   593 \end{example}
   594 
   594 
   595 This example will be essential for Theorem \ref{product_thm} below, which allows us to compute the blob complex of a product. Notice that with $F$ a point, the above example is a construction turning a topological $n$-category into an $A_\infty$ $n$-category. We think of this as providing a `free resolution' of the topological $n$-category. \todo{Say more here!} In fact, there is also a trivial way to do this: we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, and take $\CD{B}$ to act trivially. 
   595 This example will be essential for Theorem \ref{product_thm} below, which allows us to compute the blob complex of a product. Notice that with $F$ a point, the above example is a construction turning a topological $n$-category into an $A_\infty$ $n$-category. We think of this as providing a `free resolution' of the topological $n$-category. \todo{Say more here!} In fact, there is also a trivial way to do this: we can think of each vector space associated to an $n$-ball as a chain complex concentrated in degree $0$, and take $\CD{B}$ to act trivially. 
  1092 %\nn{start with (less general) tensor products; maybe change this later}
  1092 %\nn{start with (less general) tensor products; maybe change this later}
  1093 
  1093 
  1094 
  1094 
  1095 
  1095 
  1096 
  1096 
  1097 \subsection{Morphisms of $A_\infty$ 1-cat modules}
  1097 \subsection{Morphisms of $A_\infty$ $1$-category modules}
  1098 \label{ss:module-morphisms}
  1098 \label{ss:module-morphisms}
  1099 
  1099 
  1100 In order to state and prove our version of the higher dimensional Deligne conjecture
  1100 In order to state and prove our version of the higher dimensional Deligne conjecture
  1101 (Section \ref{sec:deligne}),
  1101 (Section \ref{sec:deligne}),
  1102 we need to define morphisms of $A_\infty$ 1-category modules and establish
  1102 we need to define morphisms of $A_\infty$ $1$-category modules and establish
  1103 some of their elementary properties.
  1103 some of their elementary properties.
  1104 
  1104 
  1105 To motivate the definitions which follow, consider algebras $A$ and $B$,  right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
  1105 To motivate the definitions which follow, consider algebras $A$ and $B$,  right modules $X_B$ and $Z_A$ and a bimodule $\leftidx{_B}{Y}{_A}$, and the familiar adjunction
  1106 \begin{eqnarray*}
  1106 \begin{eqnarray*}
  1107 	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
  1107 	\hom_A(X_B\ot {_BY_A} \to Z_A) &\cong& \hom_B(X_B \to \hom_A( {_BY_A} \to Z_A)) \\
  1149 We will denote an element of the summand indexed by $\olD$ by
  1149 We will denote an element of the summand indexed by $\olD$ by
  1150 $\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
  1150 $\olD\ot m\ot\cbar\ot n$, where $m\ot\cbar\ot n \in \psi(D_0)$.
  1151 The boundary map is given by
  1151 The boundary map is given by
  1152 \begin{align*}
  1152 \begin{align*}
  1153 	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
  1153 	\bd(\olD\ot m\ot\cbar\ot n) &= (\bd_0 \olD)\ot \rho(m\ot\cbar\ot n) + (\bd_+ \olD)\ot m\ot\cbar\ot n \; + \\
  1154 	& \qquad + (-1)^l \olD\ot\bd(m\ot\cbar\ot n) 
  1154 	& \qquad + (-1)^l \olD\ot\bd m\ot\cbar\ot n + (-1)^{l+\deg m}  \olD\ot m\ot\bd \cbar\ot n + \\
       
  1155 	& \qquad + (-1)^{l+\deg m + \deg \cbar}  \olD\ot m\ot \cbar\ot \bd n
  1155 \end{align*}
  1156 \end{align*}
  1156 where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
  1157 where $\bd_+ \olD = \sum_{i>0} (-1)^i (D_0\to \cdots \to \widehat{D_i} \to \cdots \to D_l)$ (those parts of the simplicial
  1157 boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
  1158 boundary which retain $D_0$), $\bd_0 \olD = (D_1 \to \cdots \to D_l)$,
  1158 and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
  1159 and $\rho$ is the gluing map associated to the antirefinement $D_0\to D_1$.
  1159 
  1160 
  1161 \[
  1162 \[
  1162 	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
  1163 	\prod_l \prod_{\olD} (\psi(D_0)[l])^* ,
  1163 \]
  1164 \]
  1164 where $(\psi(D_0)[l])^*$ denotes the linear dual.
  1165 where $(\psi(D_0)[l])^*$ denotes the linear dual.
  1165 The boundary is given by
  1166 The boundary is given by
  1166 \begin{eqnarray*}
  1167 \begin{align}
  1167 	(\bd f)(\olD\ot m\ot\cbar\ot n) &=& f(\olD\ot\bd(m\ot\cbar)\ot n) + 
  1168 \label{eq:tensor-product-boundary}
  1168 													f(\olD\ot m\ot\cbar\ot \bd n) + \\
  1169 	 (-1)^{\deg f +1} (\bd f)(\olD\ot m\ot\cbar\ot n) & = f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) +  f((\bd_+ \olD)\ot m\ot\cbar\ot n) + \\
  1169 			& & \;\;	f((\bd_+ \olD)\ot m\ot\cbar\ot n) + f((\bd_0 \olD)\ot \rho(m\ot\cbar\ot n)) .
  1170 						     & \qquad + (-1)^{l} f(\olD\ot\bd m\ot\cbar \ot n)  + (-1)^{l + \deg m} f(\olD\ot m\ot\bd \cbar \ot n)  + \notag \\
  1170 \end{eqnarray*}
  1171 			& \qquad	 + (-1)^{l + \deg m + \deg \cbar} f(\olD\ot m\ot\cbar\ot \bd n). \notag
  1171 (Again, we are ignoring signs.) \nn{put signs in}
  1172 \end{align}
  1172 
  1173 
  1173 Next we define the dual module $(_\cC\cN)^*$.
  1174 Next we define the dual module $(_\cC\cN)^*$.
  1174 This will depend on a choice of interval $J$, just as the tensor product did.
  1175 This will depend on a choice of interval $J$, just as the tensor product did.
  1175 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
  1176 Recall that $_\cC\cN$ is, among other things, a functor from right-marked intervals
  1176 to chain complexes.
  1177 to chain complexes.
  1186 
  1187 
  1187 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
  1188 Now we reinterpret $(\cM_\cC\ot {_\cC\cN})^*$
  1188 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1189 as some sort of morphism $\cM_\cC \to (_\cC\cN)^*$.
  1189 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
  1190 Let $f\in (\cM_\cC\ot {_\cC\cN})^*$.
  1190 Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
  1191 Let $\olD = (D_0\cdots D_l)$ be a chain of subdivisions with $D_0 = [J = I_1\cup\cdots\cup I_m]$.
  1191 Recall that $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
  1192 Recall that for any subdivision $J = I_1\cup\cdots\cup I_p$, $(_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) = (_\cC\cN(I_p))^*$.
  1192 Then for each such $\olD$ we have a degree $l$ map
  1193 Then for each such $\olD$ we have a degree $l$ map
  1193 \begin{eqnarray*}
  1194 \begin{eqnarray*}
  1194 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
  1195 	\cM(I_1)\ot\cC(I_2)\ot\cdots\ot\cC(I_{p-1}) &\to& (_\cC\cN)^*(I_1\cup\cdots\cup I_{p-1}) \\
  1195 	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
  1196 	m\ot \cbar &\mapsto& [n\mapsto f(\olD\ot m\ot \cbar\ot n)]
  1196 \end{eqnarray*}
  1197 \end{eqnarray*}
  1230 	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
  1231 	\olD\ot x \ot \cbar \mapsto g(\olD\ot x \ot \cbar) \in \cY(I_1\cup\cdots\cup I_{p-1}) .
  1231 \]
  1232 \]
  1232 For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals
  1233 For fixed $D_0$ and $D_1$, let $\cbar = \cbar'\ot\cbar''$, where $\cbar'$ corresponds to the subintervals of $D_0$ which map to $D_1$ and $\cbar''$ corresponds to the subintervals
  1233 which are dropped off the right side.
  1234 which are dropped off the right side.
  1234 (Either $\cbar'$ or $\cbar''$ might be empty.)
  1235 (Either $\cbar'$ or $\cbar''$ might be empty.)
  1235 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$ \nn{give ref?},
  1236 \nn{surely $\cbar'$ can't be empy: we don't allow $D_1$ to be empty.}
       
  1237 Translating from the boundary map for $(\cM_\cC\ot {_\cC\cN})^*$  appearing in Equation \eqref{eq:tensor-product-boundary},
  1236 we have
  1238 we have
  1237 \begin{eqnarray*}
  1239 \begin{eqnarray*}
  1238 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
  1240 	(\bd g)(\olD\ot x \ot \cbar) &=& \bd(g(\olD\ot x \ot \cbar)) + g(\olD\ot\bd(x\ot\cbar)) + \\
  1239 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
  1241 	& & \;\; g((\bd_+\olD)\ot x\ot\cbar) + \gl(g((\bd_0\olD)\ot x\ot\cbar')\ot\cbar'') .
  1240 \end{eqnarray*}
  1242 \end{eqnarray*}
       
  1243 \nn{put in signs, rearrange terms to match order in previous formulas}
  1241 Here $\gl$ denotes the module action in $\cY_\cC$.
  1244 Here $\gl$ denotes the module action in $\cY_\cC$.
  1242 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
  1245 This completes the definition of $\hom_\cC(\cX_\cC \to \cY_\cC)$.
  1243 
  1246 
  1244 Note that if $\bd g = 0$, then each 
  1247 Note that if $\bd g = 0$, then each 
  1245 \[
  1248 \[
  1536 \begin{align*}
  1539 \begin{align*}
  1537 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
  1540 \CD{J \to J'} \tensor C_*(\Maps(J \to M)) & \to C_*(\Diff(J \to J') \times \Maps(J \to M)) \\ & \to C_*(\Maps(J' \to M)),
  1538 \end{align*}
  1541 \end{align*}
  1539 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism.
  1542 where the first map is the product of singular chains, and the second is precomposition by the inverse of a diffeomorphism.
  1540 
  1543 
  1541 We now give two motivating examples, as theorems constructing other homological systems of fields,
       
  1542 
       
  1543 
       
  1544 \begin{thm}
       
  1545 For a fixed target space $X$, `chains of maps to $X$' is a homological system of fields $\Xi$, defined as
       
  1546 \begin{equation*}
       
  1547 \Xi(M) = \CM{M}{X}.
       
  1548 \end{equation*}
       
  1549 \end{thm}
       
  1550 
       
  1551 \begin{thm}
       
  1552 Given an $n$-dimensional system of fields $\cF$, and a $k$-manifold $F$, there is an $n-k$ dimensional homological system of fields $\cF^{\times F}$ defined by
       
  1553 \begin{equation*}
       
  1554 \cF^{\times F}(M) = \cB_*(M \times F, \cF).
       
  1555 \end{equation*}
       
  1556 \end{thm}
       
  1557 We might suggestively write $\cF^{\times F}$ as  $\cB_*(F \times [0,1]^b, \cF)$, interpreting this as an (undefined!) $A_\infty$ $b$-category, and then as the resulting homological system of fields, following a recipe analogous to that given above for $A_\infty$ $1$-categories.
       
  1558 
       
  1559 
       
  1560 In later sections, we'll prove the following two unsurprising theorems, about the (as-yet-undefined) blob homology of these homological systems of fields.
       
  1561 
       
  1562 
       
  1563 \begin{thm}
       
  1564 \begin{equation*}
       
  1565 \cB_*(M, \Xi) \iso \Xi(M)
       
  1566 \end{equation*}
       
  1567 \end{thm}
       
  1568 
       
  1569 \begin{thm}[Product formula]
       
  1570 Given a $b$-manifold $B$, an $f$-manifold $F$ and a $b+f$ dimensional system of fields,
       
  1571 there is a quasi-isomorphism
       
  1572 \begin{align*}
       
  1573 \cB_*(B \times F, \cF) & \quismto \cB_*(B, \cF^{\times F})
       
  1574 \end{align*}
       
  1575 \end{thm}
       
  1576 
       
  1577 \begin{question}
       
  1578 Is it possible to compute the blob homology of a non-trivial bundle in terms of the blob homology of its fiber?
       
  1579 \end{question}
       
  1580 
       
  1581 \hrule
  1544 \hrule