text/ncat.tex
changeset 224 9faf1f7fad3e
parent 222 217b6a870532
child 225 32a76e8886d1
equal deleted inserted replaced
223:243f84172720 224:9faf1f7fad3e
   584 $$C_*(\Maps_c(X\times F \to T)),$$ where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
   584 $$C_*(\Maps_c(X\times F \to T)),$$ where $\Maps_c$ denotes continuous maps restricting to $c$ on the boundary,
   585 and $C_*$ denotes singular chains.
   585 and $C_*$ denotes singular chains.
   586 \nn{maybe should also mention version where we enrich over spaces rather than chain complexes}
   586 \nn{maybe should also mention version where we enrich over spaces rather than chain complexes}
   587 \end{example}
   587 \end{example}
   588 
   588 
   589 See \ref{thm:map-recon} below, recovering $C_*(\Maps{M \to T})$ as (up to homotopy) the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
   589 See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps{M \to T})$ up to homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
   590 
   590 
   591 \begin{example}[Blob complexes of balls (with a fiber)]
   591 \begin{example}[Blob complexes of balls (with a fiber)]
   592 \rm
   592 \rm
   593 \label{ex:blob-complexes-of-balls}
   593 \label{ex:blob-complexes-of-balls}
   594 Fix an $m$-dimensional manifold $F$.
   594 Fix an $m$-dimensional manifold $F$. We will define an $A_\infty$ $n-m$-category $\cC$.
   595 Given a plain $n$-category $C$, 
   595 Given a plain $n$-category $C$, 
   596 when $X$ is a $k$-ball or $k$-sphere, with $k<n-m$, define $\cC(X) = C(X)$. When $X$ is an $(n-m)$-ball,
   596 when $X$ is a $k$-ball or $k$-sphere, with $k<n-m$, define $\cC(X) = C(X)$. When $X$ is an $(n-m)$-ball,
   597 define $\cC(X; c) = \bc^C_*(X\times F; c)$
   597 define $\cC(X; c) = \bc^C_*(X\times F; c)$
   598 where $\bc^C_*$ denotes the blob complex based on $C$.
   598 where $\bc^C_*$ denotes the blob complex based on $C$.
   599 \end{example}
   599 \end{example}
   600 
   600 
   601 This example will be essential for ???, which relates ...
   601 This example will be essential for Theorem \ref{product_thm} below, which relates ...
   602 
   602 
   603 \begin{example}
   603 \begin{example}
   604 \nn{should add $\infty$ version of bordism $n$-cat}
   604 \nn{should add $\infty$ version of bordism $n$-cat}
   605 \end{example}
   605 \end{example}
   606 
   606 
   778 (The union is along $N\times \bd W$.)
   778 (The union is along $N\times \bd W$.)
   779 (If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
   779 (If $\cD$ were a general TQFT, we would define $\cM(B, N)$ to be
   780 the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
   780 the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
   781 
   781 
   782 \begin{figure}[!ht]
   782 \begin{figure}[!ht]
   783 $$\mathfig{.8}{tempkw/blah15}$$
   783 $$\mathfig{.8}{ncat/boundary-collar}$$
   784 \caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
   784 \caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
   785 
   785 
   786 Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
   786 Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
   787 Call such a thing a {marked $k{-}1$-hemisphere}.
   787 Call such a thing a {marked $k{-}1$-hemisphere}.
   788 
   788 
   991 In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
   991 In all other cases ($k>1$ or unoriented or $\text{Pin}_\pm$),
   992 there is no left/right module distinction.
   992 there is no left/right module distinction.
   993 
   993 
   994 \medskip
   994 \medskip
   995 
   995 
       
   996 We now give some examples of modules over topological and $A_\infty$ $n$-categories.
       
   997 
   996 Examples of modules:
   998 Examples of modules:
   997 \begin{itemize}
   999 \begin{itemize}
   998 \item \nn{examples from TQFTs}
  1000 \item \nn{examples from TQFTs}
   999 \item \nn{for maps to $T$, can restrict to subspaces of $T$;}
       
  1000 \end{itemize}
  1001 \end{itemize}
       
  1002 
       
  1003 \begin{example}
       
  1004 Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all such maps modulo homotopies fixed on $\bdy B \setminus N$. This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}. Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
       
  1005 \end{example}
  1001 
  1006 
  1002 \subsection{Modules as boundary labels}
  1007 \subsection{Modules as boundary labels}
  1003 \label{moddecss}
  1008 \label{moddecss}
  1004 
  1009 
  1005 Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
  1010 Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$. Let $W$ be a $k$-manifold ($k\le n$),
  1006 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
  1011 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
  1007 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
  1012 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
  1008 
  1013 
  1009 %Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
  1014 %Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
  1010 %and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary 
  1015 %and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to each boundary