fixing signs in small blobs lemma
authorscott@6e1638ff-ae45-0410-89bd-df963105f760
Sun, 28 Mar 2010 01:40:58 +0000
changeset 224 9faf1f7fad3e
parent 223 243f84172720
child 225 32a76e8886d1
fixing signs in small blobs lemma
diagrams/latex2pdf/defontify.tex
text/ncat.tex
text/smallblobs.tex
--- a/diagrams/latex2pdf/defontify.tex	Sun Mar 28 01:40:45 2010 +0000
+++ b/diagrams/latex2pdf/defontify.tex	Sun Mar 28 01:40:58 2010 +0000
@@ -15,7 +15,7 @@
 $n$-category composition
 
 \newcommand{\cN}{\mathcal{N}}
-$\cN_1 \cN_2 \cN_3$
+$\cN_1 \cN_2 \cN_3 B M B \times \bdy W M \times W$
 
 \begin{align*}
 abmab & \\
--- a/text/ncat.tex	Sun Mar 28 01:40:45 2010 +0000
+++ b/text/ncat.tex	Sun Mar 28 01:40:58 2010 +0000
@@ -586,19 +586,19 @@
 \nn{maybe should also mention version where we enrich over spaces rather than chain complexes}
 \end{example}
 
-See \ref{thm:map-recon} below, recovering $C_*(\Maps{M \to T})$ as (up to homotopy) the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
+See also Theorem \ref{thm:map-recon} below, recovering $C_*(\Maps{M \to T})$ up to homotopy the blob complex of $M$ with coefficients in $\pi^\infty_{\le n}(T)$.
 
 \begin{example}[Blob complexes of balls (with a fiber)]
 \rm
 \label{ex:blob-complexes-of-balls}
-Fix an $m$-dimensional manifold $F$.
+Fix an $m$-dimensional manifold $F$. We will define an $A_\infty$ $n-m$-category $\cC$.
 Given a plain $n$-category $C$, 
 when $X$ is a $k$-ball or $k$-sphere, with $k<n-m$, define $\cC(X) = C(X)$. When $X$ is an $(n-m)$-ball,
 define $\cC(X; c) = \bc^C_*(X\times F; c)$
 where $\bc^C_*$ denotes the blob complex based on $C$.
 \end{example}
 
-This example will be essential for ???, which relates ...
+This example will be essential for Theorem \ref{product_thm} below, which relates ...
 
 \begin{example}
 \nn{should add $\infty$ version of bordism $n$-cat}
@@ -780,7 +780,7 @@
 the subset of $\cD((B\times \bd W)\cup (N\times W))$ which is splittable along $N\times \bd W$.)
 
 \begin{figure}[!ht]
-$$\mathfig{.8}{tempkw/blah15}$$
+$$\mathfig{.8}{ncat/boundary-collar}$$
 \caption{From manifold with boundary collar to marked ball}\label{blah15}\end{figure}
 
 Define the boundary of a marked $k$-ball $(B, N)$ to be the pair $(\bd B \setmin N, \bd N)$.
@@ -993,16 +993,21 @@
 
 \medskip
 
+We now give some examples of modules over topological and $A_\infty$ $n$-categories.
+
 Examples of modules:
 \begin{itemize}
 \item \nn{examples from TQFTs}
-\item \nn{for maps to $T$, can restrict to subspaces of $T$;}
 \end{itemize}
 
+\begin{example}
+Suppose $S$ is a topological space, with a subspace $T$. We can define a module $\pi_{\leq n}(S,T)$ so that on each marked $k$-ball $(B,N)$ for $k<n$ the set $\pi_{\leq n}(S,T)(B,N)$ consists of all continuous maps of pairs $(B,N) \to (S,T)$ and on each marked $n$-ball $(B,N)$ it consists of all such maps modulo homotopies fixed on $\bdy B \setminus N$. This is a module over the fundamental $n$-category $\pi_{\leq n}(S)$ of $S$, from Example \ref{ex:maps-to-a-space}. Modifications corresponding to Examples \ref{ex:maps-to-a-space-with-a-fiber} and \ref{ex:linearized-maps-to-a-space} are also possible, and there is an $A_\infty$ version analogous to Example \ref{ex:chains-of-maps-to-a-space} given by taking singular chains.
+\end{example}
+
 \subsection{Modules as boundary labels}
 \label{moddecss}
 
-Let $\cC$ be an [$A_\infty$] $n$-category, let $W$ be a $k$-manifold ($k\le n$),
+Fix a topological $n$-category or $A_\infty$ $n$-category  $\cC$. Let $W$ be a $k$-manifold ($k\le n$),
 let $\{Y_i\}$ be a collection of disjoint codimension 0 submanifolds of $\bd W$,
 and let $\cN = (\cN_i)$ be an assignment of a $\cC$ module $\cN_i$ to $Y_i$.
 
--- a/text/smallblobs.tex	Sun Mar 28 01:40:45 2010 +0000
+++ b/text/smallblobs.tex	Sun Mar 28 01:40:58 2010 +0000
@@ -10,25 +10,24 @@
 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=\id - i\circ s$. The composition $s \circ i$ will just be the identity.
 
-On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_i x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
+On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
 
-On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(0,1)$ is the identity and $\phi_\beta(1,0)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(s,t,0)$ makes the ball $\beta$ small for all $s+t=1$, while $\phi_{\eset \prec \beta}(0,t,u) = \phi_\eset(t,u)$ and $\phi_{\eset \prec \beta}(s,0,u) = \phi_\beta(s,u)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
-$$s(b) = \phi_\beta(1,0)(b) + \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b).$$
-Here, $\phi_\beta(1,0)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{u=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. We now check that $s$, as defined so far, is a chain map, calculating
+On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\eset(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\beta(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
+$$s(b) = \restrict{\phi_\beta}{x_0=0}(b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
+Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. We now check that $s$, as defined so far, is a chain map, calculating
 \begin{align*}
-\bdy (s(b)) & = \phi_\beta(1,0)(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{u=0})(\bdy b) \\
-		 & = \phi_\beta(1,0)(\bdy b) + \phi_\eset(1,0)(\bdy b) - \phi_\beta(1,0)(\bdy b) \\
-		 & = \phi_\eset(1,0)(\bdy b) \\
+\bdy (s(b)) & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{x_0=0})(\bdy b) \\
+		 & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + \restrict{\phi_\eset}{x_0=0}(\bdy b) - \restrict{\phi_\beta}{x_0=0}(\bdy b) \\
+		 & = \restrict{\phi_\eset}{x_0=0}(\bdy b) \\
 		 & = s(\bdy b)
 \end{align*}
-Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct the homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) - \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and this is the action of a one parameter family of homeomorphisms on a $1$-blob, so a $2$-blob).
-
+Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) + \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and the first term is the action of a one parameter family of homeomorphisms on a $1$-blob, and the second term is the action of a two parameter family of homeomorphisms on a $0$-blob, so both are $2$-blobs).
 \begin{align*}
-(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) - \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
-	& = b - \phi_\beta(1,0)(b) - \phi_\beta(\bdy b) - (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
-	& =  b - \phi_\beta(1,0)(b) - \phi_\beta(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) - \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b) + \phi_\eset(\bdy b) \\
-	& = b - \phi_\beta(1,0)(b) - \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b) \\
-	& = (\id - i \circ s)(b)
+(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) + \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
+	& =  \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_\beta}{x_1=0}(b) - \phi_\beta(\bdy b) + (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
+	& =  \restrict{\phi_\beta}{x_0=0}(b) - b - \phi_\beta(\bdy b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) + \phi_\eset(\bdy b) \\
+	& = \restrict{\phi_\beta}{x_0=0}(b) - b + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) \\
+	& = (i \circ s - \id)(b)
 \end{align*}