text/smallblobs.tex
changeset 224 9faf1f7fad3e
parent 222 217b6a870532
child 225 32a76e8886d1
equal deleted inserted replaced
223:243f84172720 224:9faf1f7fad3e
     8 \end{thm}
     8 \end{thm}
     9 \begin{proof}
     9 \begin{proof}
    10 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
    10 We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
    11 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=\id - i\circ s$. The composition $s \circ i$ will just be the identity.
    11 We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=\id - i\circ s$. The composition $s \circ i$ will just be the identity.
    12 
    12 
    13 On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_i x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
    13 On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
    14 
    14 
    15 On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(0,1)$ is the identity and $\phi_\beta(1,0)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(s,t,0)$ makes the ball $\beta$ small for all $s+t=1$, while $\phi_{\eset \prec \beta}(0,t,u) = \phi_\eset(t,u)$ and $\phi_{\eset \prec \beta}(s,0,u) = \phi_\beta(s,u)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
    15 On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\eset(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\beta(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
    16 $$s(b) = \phi_\beta(1,0)(b) + \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b).$$
    16 $$s(b) = \restrict{\phi_\beta}{x_0=0}(b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
    17 Here, $\phi_\beta(1,0)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{u=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. We now check that $s$, as defined so far, is a chain map, calculating
    17 Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob. We now check that $s$, as defined so far, is a chain map, calculating
    18 \begin{align*}
    18 \begin{align*}
    19 \bdy (s(b)) & = \phi_\beta(1,0)(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{u=0})(\bdy b) \\
    19 \bdy (s(b)) & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{x_0=0})(\bdy b) \\
    20 		 & = \phi_\beta(1,0)(\bdy b) + \phi_\eset(1,0)(\bdy b) - \phi_\beta(1,0)(\bdy b) \\
    20 		 & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + \restrict{\phi_\eset}{x_0=0}(\bdy b) - \restrict{\phi_\beta}{x_0=0}(\bdy b) \\
    21 		 & = \phi_\eset(1,0)(\bdy b) \\
    21 		 & = \restrict{\phi_\eset}{x_0=0}(\bdy b) \\
    22 		 & = s(\bdy b)
    22 		 & = s(\bdy b)
    23 \end{align*}
    23 \end{align*}
    24 Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct the homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) - \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and this is the action of a one parameter family of homeomorphisms on a $1$-blob, so a $2$-blob).
    24 Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) + \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and the first term is the action of a one parameter family of homeomorphisms on a $1$-blob, and the second term is the action of a two parameter family of homeomorphisms on a $0$-blob, so both are $2$-blobs).
    25 
       
    26 \begin{align*}
    25 \begin{align*}
    27 (\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) - \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
    26 (\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) + \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
    28 	& = b - \phi_\beta(1,0)(b) - \phi_\beta(\bdy b) - (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
    27 	& =  \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_\beta}{x_1=0}(b) - \phi_\beta(\bdy b) + (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
    29 	& =  b - \phi_\beta(1,0)(b) - \phi_\beta(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) - \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b) + \phi_\eset(\bdy b) \\
    28 	& =  \restrict{\phi_\beta}{x_0=0}(b) - b - \phi_\beta(\bdy b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) + \phi_\eset(\bdy b) \\
    30 	& = b - \phi_\beta(1,0)(b) - \restrict{\phi_{\eset \prec \beta}}{u=0}(\bdy b) \\
    29 	& = \restrict{\phi_\beta}{x_0=0}(b) - b + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) \\
    31 	& = (\id - i \circ s)(b)
    30 	& = (i \circ s - \id)(b)
    32 \end{align*}
    31 \end{align*}
    33 
    32 
    34 
    33 
    35 Given a blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{1, \ldots, k\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{1,\ldots,k\}} \in \bc_0(M)$, and $d b_\cS = \sum_{\cS' = \cS'\sqcup\{i\}} \pm  b_{\cS'}$.
    34 Given a blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{1, \ldots, k\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{1,\ldots,k\}} \in \bc_0(M)$, and $d b_\cS = \sum_{\cS' = \cS'\sqcup\{i\}} \pm  b_{\cS'}$.
    36 Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.
    35 Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.