text/evmap.tex
changeset 560 b138ee4a5938
parent 555 11532ce39ec0
child 716 e412b47640d1
equal deleted inserted replaced
559:62a402dd3e6e 560:b138ee4a5938
   221 \item For any $b\in \BD_k$ the action map $\Homeo(X) \to \BD_k$, $f \mapsto f(b)$ is continuous.
   221 \item For any $b\in \BD_k$ the action map $\Homeo(X) \to \BD_k$, $f \mapsto f(b)$ is continuous.
   222 \item The gluing maps $\BD_k(M)\to \BD_k(M\sgl)$ are continuous.
   222 \item The gluing maps $\BD_k(M)\to \BD_k(M\sgl)$ are continuous.
   223 \item For balls $B$, the map $U(B) \to \BD_1(B)$, $u\mapsto (B, u, \emptyset)$, is continuous,
   223 \item For balls $B$, the map $U(B) \to \BD_1(B)$, $u\mapsto (B, u, \emptyset)$, is continuous,
   224 where $U(B) \sub \bc_0(B)$ inherits its topology from $\bc_0(B)$ and the topology on
   224 where $U(B) \sub \bc_0(B)$ inherits its topology from $\bc_0(B)$ and the topology on
   225 $\bc_0(B)$ comes from the generating set $\BD_0(B)$. 
   225 $\bc_0(B)$ comes from the generating set $\BD_0(B)$. 
   226 \nn{don't we need to say more to specify a topology on an $\infty$-dimensional vector space}
       
   227 \end{itemize}
   226 \end{itemize}
   228 
   227 
   229 We can summarize the above by saying that in the typical continuous family
   228 We can summarize the above by saying that in the typical continuous family
   230 $P\to \BD_k(X)$, $p\mapsto \left(B_i(p), u_i(p), r(p)\right)$, $B_i(p)$ and $r(p)$ are induced by a map
   229 $P\to \BD_k(X)$, $p\mapsto \left(B_i(p), u_i(p), r(p)\right)$, $B_i(p)$ and $r(p)$ are induced by a map
   231 $P\to \Homeo(X)$, with the twig blob labels $u_i(p)$ varying independently.
   230 $P\to \Homeo(X)$, with the twig blob labels $u_i(p)$ varying independently.
   275 the same value (namely $r(y(p))$, for any $p\in P$).
   274 the same value (namely $r(y(p))$, for any $p\in P$).
   276 Let $e(y - r(y)) \in \btc_{1j}$ denote the $j$-parameter family of 1-blob diagrams
   275 Let $e(y - r(y)) \in \btc_{1j}$ denote the $j$-parameter family of 1-blob diagrams
   277 whose value at $p\in P$ is the blob $B^n$ with label $y(p) - r(y(p))$.
   276 whose value at $p\in P$ is the blob $B^n$ with label $y(p) - r(y(p))$.
   278 Now define, for $y\in \btc_{0j}$,
   277 Now define, for $y\in \btc_{0j}$,
   279 \[
   278 \[
   280 	h(y) = e(y - r(y)) + c(r(y)) .
   279 	h(y) = e(y - r(y)) - c(r(y)) .
   281 \]
   280 \]
   282 
   281 
   283 We must now verify that $h$ does the job it was intended to do.
   282 We must now verify that $h$ does the job it was intended to do.
   284 For $x\in \btc_{ij}$ with $i\ge 2$ we have
   283 For $x\in \btc_{ij}$ with $i\ge 2$ we have
   285 \begin{align*}
   284 \begin{align*}
   288 			&= \bd_b(e(x)) + e(\bd_b x) && \text{(since $\bd_t(e(x)) = e(\bd_t x)$)} \\
   287 			&= \bd_b(e(x)) + e(\bd_b x) && \text{(since $\bd_t(e(x)) = e(\bd_t x)$)} \\
   289 		 	&= x . &&
   288 		 	&= x . &&
   290 \end{align*}
   289 \end{align*}
   291 For $x\in \btc_{1j}$ we have
   290 For $x\in \btc_{1j}$ we have
   292 \begin{align*}
   291 \begin{align*}
   293 	\bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) + c(r(\bd_b x)) - e(\bd_t x) && \\
   292 	\bd h(x) + h(\bd x) &= \bd_b(e(x)) + \bd_t(e(x)) + e(\bd_b x - r(\bd_b x)) - c(r(\bd_b x)) - e(\bd_t x) && \\
   294 			&= \bd_b(e(x)) + e(\bd_b x) && \text{(since $r(\bd_b x) = 0$)} \\
   293 			&= \bd_b(e(x)) + e(\bd_b x) && \text{(since $r(\bd_b x) = 0$)} \\
   295 			&= x . &&
   294 			&= x . &&
   296 \end{align*}
   295 \end{align*}
   297 For $x\in \btc_{0j}$ with $j\ge 1$ we have
   296 For $x\in \btc_{0j}$ with $j\ge 1$ we have
   298 \begin{align*}
   297 \begin{align*}
   299 	\bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) - \bd_t(e(x - r(x))) - \bd_t(c(r(x))) + 
   298 	\bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) - \bd_t(e(x - r(x))) + \bd_t(c(r(x))) + 
   300 											e(\bd_t x - r(\bd_t x)) + c(r(\bd_t x)) \\
   299 											e(\bd_t x - r(\bd_t x)) - c(r(\bd_t x)) \\
   301 			&= x - r(x) - \bd_t(c(r(x))) + c(r(\bd_t x)) \\
   300 			&= x - r(x) + \bd_t(c(r(x))) - c(r(\bd_t x)) \\
   302 			&= x - r(x) + r(x) \\
   301 			&= x - r(x) + r(x) \\
   303 			&= x.
   302 			&= x.
   304 \end{align*}
   303 \end{align*}
   305 Here we have used the fact that $\bd_b(c(r(x))) = 0$ since $c(r(x))$ is a $0$-blob diagram, 
   304 Here we have used the fact that $\bd_b(c(r(x))) = 0$ since $c(r(x))$ is a $0$-blob diagram, 
   306 as well as that $\bd_t(e(r(x))) = e(r(\bd_t x))$ 
   305 as well as that $\bd_t(e(r(x))) = e(r(\bd_t x))$
   307 \nn{explain why this is true?} 
   306 and $\bd_t(c(r(x))) - c(r(\bd_t x))  = r(x)$.
   308 and $c(r(\bd_t x)) - \bd_t(c(r(x))) = r(x)$ \nn{explain?}.
       
   309 
   307 
   310 For $x\in \btc_{00}$ we have
   308 For $x\in \btc_{00}$ we have
   311 \begin{align*}
   309 \begin{align*}
   312 	\bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(c(r(x))) \\
   310 	\bd h(x) + h(\bd x) &= \bd_b(e(x - r(x))) + \bd_t(c(r(x))) \\
   313 			&= x - r(x) + r(x) - r(x)\\
   311 			&= x - r(x) + r(x) - r(x)\\