text/evmap.tex
changeset 84 c3aace2330ac
parent 83 62cd552bf8c9
child 85 ffcd1a5eafd8
equal deleted inserted replaced
83:62cd552bf8c9 84:c3aace2330ac
   175 
   175 
   176 Next we define subcomplexes $G_*^{i,m} \sub CD_*(X)\otimes \bc_*(X)$.
   176 Next we define subcomplexes $G_*^{i,m} \sub CD_*(X)\otimes \bc_*(X)$.
   177 Let $p\ot b$ be a generator of $CD_*(X)\otimes \bc_*(X)$ and let $k = \deg(p\ot b)
   177 Let $p\ot b$ be a generator of $CD_*(X)\otimes \bc_*(X)$ and let $k = \deg(p\ot b)
   178 = \deg(p) + \deg(b)$.
   178 = \deg(p) + \deg(b)$.
   179 $p\ot b$ is (by definition) in $G_*^{i,m}$ if either (a) $\deg(p) = 0$ or (b)
   179 $p\ot b$ is (by definition) in $G_*^{i,m}$ if either (a) $\deg(p) = 0$ or (b)
   180 there exist codimension-zero submanifolds $V_1,\ldots,V_m \sub X$ such that each $V_j$
   180 there exist codimension-zero submanifolds $V_0,\ldots,V_m \sub X$ such that each $V_j$
   181 is homeomorphic to a disjoint union of balls and
   181 is homeomorphic to a disjoint union of balls and
   182 \[
   182 \[
   183 	N_{i,k}(p\ot b) \subeq V_1 \subeq N_{i,k+1}(p\ot b)
   183 	N_{i,k}(p\ot b) \subeq V_0 \subeq N_{i,k+1}(p\ot b)
   184 			\subeq V_2 \subeq \cdots \subeq V_m \subeq N_{i,k+m}(p\ot b) .
   184 			\subeq V_1 \subeq \cdots \subeq V_m \subeq N_{i,k+m+1}(p\ot b) .
   185 \]
   185 \]
   186 Further, we require (inductively) that $\bd(p\ot b) \in G_*^{i,m}$.
   186 Further, we require (inductively) that $\bd(p\ot b) \in G_*^{i,m}$.
   187 We also require that $b$ is splitable (transverse) along the boundary of each $V_l$.
   187 We also require that $b$ is splitable (transverse) along the boundary of each $V_l$.
   188 
   188 
   189 Note that $G_*^{i,m+1} \subeq G_*^{i,m}$.
   189 Note that $G_*^{i,m+1} \subeq G_*^{i,m}$.
   190 
   190 
   191 As sketched above and explained in detail below, 
   191 As sketched above and explained in detail below, 
   192 $G_*^{i,m}$ is a subcomplex where it is easy to define
   192 $G_*^{i,m}$ is a subcomplex where it is easy to define
   193 the evaluation map.
   193 the evaluation map.
   194 The parameter $m$ controls the number of iterated homotopies we are able to construct.
   194 The parameter $m$ controls the number of iterated homotopies we are able to construct
       
   195 (Lemma \ref{mhtyLemma}).
   195 The larger $i$ is (i.e.\ the smaller $\ep_i$ is), the better $G_*^{i,m}$ approximates all of
   196 The larger $i$ is (i.e.\ the smaller $\ep_i$ is), the better $G_*^{i,m}$ approximates all of
   196 $CD_*(X)\ot \bc_*(X)$.
   197 $CD_*(X)\ot \bc_*(X)$ (Lemma \ref{xxxlemma}).
   197 
   198 
   198 Next we define a chain map (dependent on some choices) $e: G_*^{i,m} \to \bc_*(X)$.
   199 Next we define a chain map (dependent on some choices) $e: G_*^{i,m} \to \bc_*(X)$.
   199 Let $p\ot b \in G_*^{i,m}$.
   200 Let $p\ot b \in G_*^{i,m}$.
   200 If $\deg(p) = 0$, define
   201 If $\deg(p) = 0$, define
   201 \[
   202 \[
   202 	e(p\ot b) = p(b) ,
   203 	e(p\ot b) = p(b) ,
   203 \]
   204 \]
   204 where $p(b)$ denotes the obvious action of the diffeomorphism(s) $p$ on the blob diagram $b$.
   205 where $p(b)$ denotes the obvious action of the diffeomorphism(s) $p$ on the blob diagram $b$.
   205 For general $p\ot b$ ($\deg(p) \ge 1$) assume inductively that we have already defined
   206 For general $p\ot b$ ($\deg(p) \ge 1$) assume inductively that we have already defined
   206 $e(p'\ot b')$ when $\deg(p') + \deg(b') < k = \deg(p) + \deg(b)$.
   207 $e(p'\ot b')$ when $\deg(p') + \deg(b') < k = \deg(p) + \deg(b)$.
   207 Choose $V_1$ as above so that 
   208 Choose $V = V_0$ as above so that 
   208 \[
   209 \[
   209 	N_{i,k}(p\ot b) \subeq V_1 \subeq N_{i,k+1}(p\ot b) .
   210 	N_{i,k}(p\ot b) \subeq V \subeq N_{i,k+1}(p\ot b) .
   210 \]
   211 \]
   211 Let $\bd(p\ot b) = \sum_j p_j\ot b_j$, and let $V_1^j$ be the choice of neighborhood
   212 Let $\bd(p\ot b) = \sum_j p_j\ot b_j$, and let $V^j$ be the choice of neighborhood
   212 of $|p_j|\cup |b_j|$ made at the preceding stage of the induction.
   213 of $|p_j|\cup |b_j|$ made at the preceding stage of the induction.
   213 For all $j$, 
   214 For all $j$, 
   214 \[
   215 \[
   215 	V_1^j \subeq N_{i,(k-1)+1}(p_j\ot b_j) \subeq N_{i,k}(p\ot b) \subeq V_1 .
   216 	V^j \subeq N_{i,(k-1)+1}(p_j\ot b_j) \subeq N_{i,k}(p\ot b) \subeq V .
   216 \]
   217 \]
   217 (The second inclusion uses the facts that $|p_j| \subeq |p|$ and $|b_j| \subeq |b|$.)
   218 (The second inclusion uses the facts that $|p_j| \subeq |p|$ and $|b_j| \subeq |b|$.)
   218 We therefore have splittings
   219 We therefore have splittings
   219 \[
   220 \[
   220 	p = p'\bullet p'' , \;\; b = b'\bullet b'' , \;\; e(\bd(p\ot b)) = f'\bullet f'' ,
   221 	p = p'\bullet p'' , \;\; b = b'\bullet b'' , \;\; e(\bd(p\ot b)) = f'\bullet f'' ,
   221 \]
   222 \]
   222 where $p' \in CD_*(V_1)$, $p'' \in CD_*(X\setmin V_1)$, 
   223 where $p' \in CD_*(V)$, $p'' \in CD_*(X\setmin V)$, 
   223 $b' \in \bc_*(V_1)$, $b'' \in \bc_*(X\setmin V_1)$, 
   224 $b' \in \bc_*(V)$, $b'' \in \bc_*(X\setmin V)$, 
   224 $e' \in \bc_*(p(V_1))$, and $e'' \in \bc_*(p(X\setmin V_1))$.
   225 $e' \in \bc_*(p(V))$, and $e'' \in \bc_*(p(X\setmin V))$.
   225 (Note that since the family of diffeomorphisms $p$ is constant (independent of parameters)
   226 (Note that since the family of diffeomorphisms $p$ is constant (independent of parameters)
   226 near $\bd V_1)$, the expressions $p(V_1) \sub X$ and $p(X\setmin V_1) \sub X$ are
   227 near $\bd V)$, the expressions $p(V) \sub X$ and $p(X\setmin V) \sub X$ are
   227 unambiguous.)
   228 unambiguous.)
   228 We also have that $\deg(b'') = 0 = \deg(p'')$.
   229 We also have that $\deg(b'') = 0 = \deg(p'')$.
   229 Choose $x' \in \bc_*(p(V_1))$ such that $\bd x' = f'$.
   230 Choose $x' \in \bc_*(p(V))$ such that $\bd x' = f'$.
   230 This is possible by \nn{...}.
   231 This is possible by \nn{...}.
   231 Finally, define
   232 Finally, define
   232 \[
   233 \[
   233 	e(p\ot b) \deq x' \bullet p''(b'') .
   234 	e(p\ot b) \deq x' \bullet p''(b'') .
   234 \]
   235 \]
   235 
   236 
   236 
   237 Note that above we are essentially using the method of acyclic models.
   237 \medskip
   238 For each generator $p\ot b$ we specify the acyclic (in positive degrees) 
       
   239 target complex $\bc_*(p(V)) \bullet p''(b'')$.
       
   240 
       
   241 The definition of $e: G_*^{i,m} \to \bc_*(X)$ depends on two sets of choices:
       
   242 The choice of neighborhoods $V$ and the choice of inverse boundaries $x'$.
       
   243 The next two lemmas show that up to (iterated) homotopy $e$ is independent
       
   244 of these choices.
       
   245 
       
   246 \begin{lemma}
       
   247 Let $\tilde{e} :  G_*^{i,m} \to \bc_*(X)$ be a chain map constructed like $e$ above, but with
       
   248 different choices of $x'$ at each step.
       
   249 (Same choice of $V$ at each step.)
       
   250 Then $e$ and $\tilde{e}$ are homotopic via a homotopy in $\bc_*(p(V)) \bullet p''(b'')$.
       
   251 Any two choices of such a first-order homotopy are second-order homotopic, and so on, 
       
   252 to arbitrary order.
       
   253 \end{lemma}
       
   254 
       
   255 \begin{proof}
       
   256 This is a standard result in the method of acyclic models.
       
   257 \nn{should we say more here?}
       
   258 \nn{maybe this lemma should be subsumed into the next lemma.  probably it should.}
       
   259 \end{proof}
       
   260 
       
   261 \begin{lemma}
       
   262 Let $\tilde{e} :  G_*^{i,m} \to \bc_*(X)$ be a chain map constructed like $e$ above, but with
       
   263 different choices of $V$ (and hence also different choices of $x'$) at each step.
       
   264 If $m \ge 1$ then $e$ and $\tilde{e}$ are homotopic.
       
   265 If $m \ge 2$ then any two choices of this first-order homotopy are second-order homotopic.
       
   266 And so on.
       
   267 In other words,  $e :  G_*^{i,m} \to \bc_*(X)$ is well-defined up to $m$-th order homotopy.
       
   268 \end{lemma}
       
   269 
       
   270 \begin{proof}
       
   271 We construct $h: G_*^{i,m} \to \bc_*(X)$ such that $\bd h + h\bd = e - \tilde{e}$.
       
   272 $e$ and $\tilde{e}$ coincide on bidegrees $(0, j)$, so define $h$
       
   273 to be zero there.
       
   274 Assume inductively that $h$ has been defined for degrees less than $k$.
       
   275 Let $p\ot b$ be a generator of degree $k$.
       
   276 Choose $V_1$ as in the definition of $G_*^{i,m}$ so that
       
   277 \[
       
   278 	N_{i,k+1}(p\ot b) \subeq V_1 \subeq N_{i,k+2}(p\ot b) .
       
   279 \]
       
   280 There are splittings
       
   281 \[
       
   282 	p = p'_1\bullet p''_1 , \;\; b = b'_1\bullet b''_1 , 
       
   283 			\;\; e(p\ot b) - \tilde{e}(p\ot b) - h(\bd(p\ot b)) = f'_1\bullet f''_1 ,
       
   284 \]
       
   285 where $p'_1 \in CD_*(V_1)$, $p''_1 \in CD_*(X\setmin V_1)$, 
       
   286 $b'_1 \in \bc_*(V_1)$, $b''_1 \in \bc_*(X\setmin V_1)$, 
       
   287 $f'_1 \in \bc_*(p(V_1))$, and $f''_1 \in \bc_*(p(X\setmin V_1))$.
       
   288 Inductively, $\bd f'_1 = 0$.
       
   289 Choose $x'_1 \in \bc_*(p(V_1))$ so that $\bd x'_1 = f'_1$.
       
   290 Define 
       
   291 \[
       
   292 	h(p\ot b) \deq x'_1 \bullet p''_1(b''_1) .
       
   293 \]
       
   294 This completes the construction of the first-order homotopy when $m \ge 1$.
       
   295 
       
   296 The $j$-th order homotopy is constructed similarly, with $V_j$ replacing $V_1$ above.
       
   297 \end{proof}
       
   298 
       
   299 Note that on $G_*^{i,m+1} \subeq G_*^{i,m}$, we have defined two maps,
       
   300 call them $e_{i,m}$ and $e_{i,m+1}$.
       
   301 An easy variation on the above lemma shows that $e_{i,m}$ and $e_{i,m+1}$ are $m$-th 
       
   302 order homotopic.
       
   303 
       
   304 
       
   305 \medskip
       
   306 
       
   307 \noop{
       
   308 
       
   309 
       
   310 \begin{lemma}
       
   311 
       
   312 \end{lemma}
       
   313 \begin{proof}
       
   314 
       
   315 \end{proof}
       
   316 
       
   317 
       
   318 }
       
   319 
   238 
   320 
   239 \nn{to be continued....}
   321 \nn{to be continued....}
   240 
   322 
   241 
   323 
   242 %\nn{say something about associativity here}
   324 %\nn{say something about associativity here}