talks/20091108-Riverside/riverside1.tex
changeset 180 c6cf04387c76
parent 176 8c2ed3a951e0
child 222 217b6a870532
equal deleted inserted replaced
179:3b228545d9bb 180:c6cf04387c76
    99 \section{Definition}
    99 \section{Definition}
   100 \begin{frame}{Fields and pasting diagrams}
   100 \begin{frame}{Fields and pasting diagrams}
   101 \begin{block}{Pasting diagrams}
   101 \begin{block}{Pasting diagrams}
   102 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
   102 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
   103 \end{block}
   103 \end{block}
   104 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
       
   105 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$
       
   106 \end{example}
       
   107 \begin{block}{}
       
   108 Given a pasting diagram on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}.
       
   109 \vspace{-3mm}
       
   110 $$\text{ev}\Bigg(\roundframe{\mathfig{0.12}{definition/evaluation1}} - \frac{1}{d}\roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
       
   111 \end{block}
       
   112 \end{frame}
   104 \end{frame}
   113 
   105 
   114 \begin{frame}{Background: TQFT invariants}
   106 \begin{frame}{Background: TQFT invariants}
   115 \begin{defn}
   107 \begin{defn}
   116 A decapitated $n+1$-dimensional TQFT associates a vector space $\cA(\cM)$ to each $n$-manifold $\cM$.
   108 A decapitated $n+1$-dimensional TQFT associates a vector space $\cA(\cM)$ to each $n$-manifold $\cM$.