text/appendixes/famodiff.tex
changeset 873 c9e955e08768
parent 872 933a93ef7df1
child 876 0df969402405
equal deleted inserted replaced
872:933a93ef7df1 873:c9e955e08768
   311 \item[(G)] $A_\beta(q,1) = A(q',1)$, for all $q,q' \in Q_\beta$, on $X \setmin V_\beta^{N-i+1}$;
   311 \item[(G)] $A_\beta(q,1) = A(q',1)$, for all $q,q' \in Q_\beta$, on $X \setmin V_\beta^{N-i+1}$;
   312 \item[(H)] $A_\beta(q, 1) = g$ on $(U_i^i \cup W_{i-1}^{i-\frac12})\setmin V_\beta^{N-i+1}$; and
   312 \item[(H)] $A_\beta(q, 1) = g$ on $(U_i^i \cup W_{i-1}^{i-\frac12})\setmin V_\beta^{N-i+1}$; and
   313 \item[(I)] the support of $A_\beta$ is contained in $U_i^{i-1} \cup V_\beta^{N-i+1}$.
   313 \item[(I)] the support of $A_\beta$ is contained in $U_i^{i-1} \cup V_\beta^{N-i+1}$.
   314 \end{itemize}
   314 \end{itemize}
   315 
   315 
       
   316 Next we define $B_\beta$.
       
   317 Theorem 5.1 of \cite{MR0283802} implies that we can choose a homotopy $B_\beta:Q_\beta\times I\to \Homeo(X)$
       
   318 such that
       
   319 \begin{itemize}
       
   320 \item[(J)] $B_\beta(\cdot, 0) = A_\beta(\cdot, 1)$;
       
   321 \item[(K)] $B_\beta(q,1) = g$ on $W_i^i$;
       
   322 \item[(L)] the support of $B_\beta(\cdot,1)$ is contained in $V_\beta^{N-i}$; and
       
   323 \item[(M)] the support of $B_\beta$ is contained in $U_i^i \cup V_\beta^{N-i}$.
       
   324 \end{itemize}
       
   325 
       
   326 All that remains is to define the ``glue" $C$ which interpolates between adjacent $\beta$ and $\beta'$.
       
   327 First consider the $k=2$ case.
   316 
   328 
   317 
   329 
   318 
   330 
   319 \nn{resume revising here}
   331 \nn{resume revising here}
   320 
   332