text/intro.tex
changeset 485 cd66f8e3ae44
parent 484 ace8913f02a5
child 489 bdbd890086eb
equal deleted inserted replaced
484:ace8913f02a5 485:cd66f8e3ae44
    87 \begin{figure}[!ht]
    87 \begin{figure}[!ht]
    88 {\center
    88 {\center
    89 
    89 
    90 \begin{tikzpicture}[align=center,line width = 1.5pt]
    90 \begin{tikzpicture}[align=center,line width = 1.5pt]
    91 \newcommand{\xa}{2}
    91 \newcommand{\xa}{2}
    92 \newcommand{\xb}{10}
    92 \newcommand{\xb}{8}
    93 \newcommand{\ya}{14}
    93 \newcommand{\ya}{14}
    94 \newcommand{\yb}{10}
    94 \newcommand{\yb}{10}
    95 \newcommand{\yc}{6}
    95 \newcommand{\yc}{6}
    96 
    96 
       
    97 \node[box] at (-4,\yb) (tC) {$C$ \\ a `traditional' \\ weak $n$-category};
    97 \node[box] at (\xa,\ya) (C) {$\cC$ \\ a topological \\ $n$-category};
    98 \node[box] at (\xa,\ya) (C) {$\cC$ \\ a topological \\ $n$-category};
    98 \node[box] at (\xb,\ya) (A) {$\underrightarrow{\cC}(M)$ \\ the (dual) TQFT \\ Hilbert space};
    99 \node[box] at (\xb,\ya) (A) {$\underrightarrow{\cC}(M)$ \\ the (dual) TQFT \\ Hilbert space};
    99 \node[box] at (\xa,\yb) (FU) {$(\cF, \cU)$ \\ fields and\\ local relations};
   100 \node[box] at (\xa,\yb) (FU) {$(\cF, \cU)$ \\ fields and\\ local relations};
   100 \node[box] at (\xb,\yb) (BC) {$\bc_*(M; \cC)$ \\ the blob complex};
   101 \node[box] at (\xb,\yb) (BC) {$\bc_*(M; \cC)$ \\ the blob complex};
   101 \node[box] at (\xa,\yc) (Cs) {$\cC_*$ \\ an $A_\infty$ \\$n$-category};
   102 \node[box] at (\xa,\yc) (Cs) {$\cC_*$ \\ an $A_\infty$ \\$n$-category};
   107 \draw[->] (FU) -- node[below] {blob complex \\ for $M$} (BC);
   108 \draw[->] (FU) -- node[below] {blob complex \\ for $M$} (BC);
   108 \draw[->] (Cs) -- node[above] {$\displaystyle \hocolim_{\cell(M)} \cC_*$} node[below] {\S \ref{ss:ncat_fields}} (BCs);
   109 \draw[->] (Cs) -- node[above] {$\displaystyle \hocolim_{\cell(M)} \cC_*$} node[below] {\S \ref{ss:ncat_fields}} (BCs);
   109 
   110 
   110 \draw[->] (FU) -- node[right=10pt] {$\cF(M)/\cU$} (A);
   111 \draw[->] (FU) -- node[right=10pt] {$\cF(M)/\cU$} (A);
   111 
   112 
   112 \draw[->] (C) -- node[left=10pt] {
   113 \draw[->] (tC) -- node[above] {Example \ref{ex:traditional-n-categories(fields)}} (FU);
   113 	Example \ref{ex:traditional-n-categories(fields)} \\ and \S \ref{ss:ncat_fields}
   114 
       
   115 \draw[->] (C.-100) -- node[left] {
       
   116 	\S \ref{ss:ncat_fields}
   114 	%$\displaystyle \cF(M) = \DirectSum_{c \in\cell(M)} \cC(c)$ \\ $\displaystyle \cU(B) = \DirectSum_{c \in \cell(B)} \ker \ev: \cC(c) \to \cC(B)$
   117 	%$\displaystyle \cF(M) = \DirectSum_{c \in\cell(M)} \cC(c)$ \\ $\displaystyle \cU(B) = \DirectSum_{c \in \cell(B)} \ker \ev: \cC(c) \to \cC(B)$
   115    } (FU);
   118    } (FU.100);
       
   119 \draw[->] (C) -- node[above left=3pt] {restrict to \\ standard balls} (tC);
       
   120 \draw[->] (FU.80) -- node[right] {restrict \\ to balls} (C.-80);
   116 \draw[->] (BC) -- node[left] {$H_0$} node[right] {c.f. Theorem \ref{thm:skein-modules}} (A);
   121 \draw[->] (BC) -- node[left] {$H_0$} node[right] {c.f. Theorem \ref{thm:skein-modules}} (A);
   117 
   122 
   118 \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs);
   123 \draw[->] (FU) -- node[left] {blob complex \\ for balls} (Cs);
   119 \draw (BC) -- node[right] {$\iso$ by \\ Corollary \ref{cor:new-old}} (BCs);
   124 \draw (BC) -- node[right] {$\iso$ by \\ Corollary \ref{cor:new-old}} (BCs);
   120 \end{tikzpicture}
   125 \end{tikzpicture}
   203 	\cdots\to \bc_2(W, L) \to \bc_1(W, L) \to \bc_0(W, L) .
   208 	\cdots\to \bc_2(W, L) \to \bc_1(W, L) \to \bc_0(W, L) .
   204 \]
   209 \]
   205 Here $\bc_0$ is linear combinations of fields on $W$,
   210 Here $\bc_0$ is linear combinations of fields on $W$,
   206 $\bc_1$ is linear combinations of local relations on $W$,
   211 $\bc_1$ is linear combinations of local relations on $W$,
   207 $\bc_2$ is linear combinations of relations amongst relations on $W$,
   212 $\bc_2$ is linear combinations of relations amongst relations on $W$,
   208 and so on.
   213 and so on. We now have a short exact sequence of chain complexes relating resolutions of the link $L$ (c.f. Lemma \ref{lem:hochschild-exact} which shows exactness with respect to boundary conditions in the context of Hochschild homology).
   209 
   214 
   210 
   215 
   211 \subsection{Formal properties}
   216 \subsection{Formal properties}
   212 \label{sec:properties}
   217 \label{sec:properties}
   213 The blob complex enjoys the following list of formal properties.
   218 The blob complex enjoys the following list of formal properties.
   224 complexes and isomorphisms between them.
   229 complexes and isomorphisms between them.
   225 \end{property}
   230 \end{property}
   226 As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cF)$; 
   231 As a consequence, there is an action of $\Homeo(X)$ on the chain complex $\bc_*(X; \cF)$; 
   227 this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below.
   232 this action is extended to all of $C_*(\Homeo(X))$ in Theorem \ref{thm:evaluation} below.
   228 
   233 
   229 The blob complex is also functorial (indeed, exact) with respect to $\cF$, 
   234 The blob complex is also functorial with respect to $\cF$, 
   230 although we will not address this in detail here.
   235 although we will not address this in detail here.
   231 \nn{KW: what exactly does ``exact in $\cF$" mean?
       
   232 Do we mean a similar statement for module labels?}
       
   233 
   236 
   234 \begin{property}[Disjoint union]
   237 \begin{property}[Disjoint union]
   235 \label{property:disjoint-union}
   238 \label{property:disjoint-union}
   236 The blob complex of a disjoint union is naturally isomorphic to the tensor product of the blob complexes.
   239 The blob complex of a disjoint union is naturally isomorphic to the tensor product of the blob complexes.
   237 \begin{equation*}
   240 \begin{equation*}