talks/20091108-Riverside/riverside1.tex
changeset 157 d45e55d25dff
parent 156 9eae41b8f7d7
child 161 04e57c6a991f
equal deleted inserted replaced
156:9eae41b8f7d7 157:d45e55d25dff
    44    \end{frame}
    44    \end{frame}
    45 }
    45 }
    46 
    46 
    47 \begin{frame}{What is \emph{blob homology}?}
    47 \begin{frame}{What is \emph{blob homology}?}
    48 \begin{block}{}
    48 \begin{block}{}
    49 The blob complex takes an $n$-manifold $M$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(M; \cC)$.
    49 The blob complex takes an $n$-manifold $\cM$ and an `$n$-category with strong duality' $\cC$ and produces a chain complex, $\bc_*(\cM; \cC)$.
    50 \end{block}
    50 \end{block}
    51 \begin{tikzpicture}
    51 \tikzstyle{description}=[gray, font=\tiny, text centered, text width=2cm]
    52 \node (blobs) at (0,0) {$\bc_*(M; \cC)$};
    52 \begin{tikzpicture}[]
    53 \node (skein) at (3,0) {$A(M; \cC)$};
    53 \setbeamercovered{%
    54 \node (hoch) at (0,3) {$HH_*(\cA)$};
    54  transparent=5,
    55 \path[->]<1-> (blobs) edge (skein);
    55 % still covered={\opaqueness<1>{15}\opaqueness<2>{10}\opaqueness<3>{5}\opaqueness<4->{2}},
       
    56  again covered={\opaqueness<1->{50}}
       
    57 }
       
    58 
       
    59 \node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$};
       
    60 \uncover<1>{
       
    61 \node[blue] (skein) at (4,0) {$A(\cM; \cC)$};
       
    62 \node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)};
       
    63 \path[->](blobs) edge node[above] {$*= 0$} (skein);
       
    64 }
       
    65 
       
    66 \uncover<2>{
       
    67   \node[blue] (hoch) at (0,3) {$HH_*(\cC)$};
       
    68   \node[right=20pt, description] (hoch-label) at (hoch) {(the Hochschild homology)};
       
    69   \path[->](blobs) edge node[right] {$\cM = S^1$} (hoch);
       
    70 }
       
    71 
       
    72 \uncover<3>{
       
    73   \node[blue] (comm) at (-2.4, -1.8) {$H_*(\Delta^\infty(\cM), k)$};
       
    74   \node[description, below=5pt] (comm-label) at (comm) {(singular homology of the infinite configuration space)};
       
    75   \path[->](blobs) edge node[right=5pt] {$\cC = k[t]$} (comm);
       
    76 }
       
    77 
    56 \end{tikzpicture}
    78 \end{tikzpicture}
       
    79 \end{frame}
       
    80 
       
    81 \begin{frame}{$n$-categories}
       
    82 \begin{block}{Defining $n$-categories is fraught with difficulties}
       
    83 I'm not going to go into details; I'll draw $2$-dimensional pictures, and rely on your intuition for pivotal $2$-categories.
       
    84 \end{block}
       
    85 \begin{block}{}
       
    86 \begin{itemize}
       
    87 \item
       
    88 Kevin's talk (part $\mathbb{II}$) will explain the notions of `topological $n$-categories' and `$A_\infty$ $n$-categories'.\item
       
    89 Defining $n$-categories: a choice of `shape' for morphisms.
       
    90 \item
       
    91 We allow all shapes! A vector space for every ball.
       
    92 \item
       
    93 `Strong duality' is integral in our definition.
       
    94 \end{itemize}
       
    95 \end{block}
       
    96 \end{frame}
       
    97 
       
    98 \newcommand{\roundframe}[1]{\begin{tikzpicture}[baseline]\node[rectangle,inner sep=1pt,rounded corners,fill=white] {#1};\end{tikzpicture}}
       
    99 
       
   100 
       
   101 \begin{frame}{Fields and pasting diagrams}
       
   102 \begin{block}{Pasting diagrams}
       
   103 Fix an $n$-category with strong duality $\cC$. A \emph{field} on $\cM$ is a pasting diagram drawn on $\cM$, with cells labelled by morphisms from $\cC$.
       
   104 \end{block}
       
   105 \begin{example}[$\cC = \text{TL}_d$ the Temperley-Lieb category]
       
   106 $$\roundframe{\mathfig{0.35}{definition/example-pasting-diagram}} \in \cF^{\text{TL}_d}\left(T^2\right)$$
       
   107 \end{example}
       
   108 \begin{block}{}
       
   109 Given a field on a ball, we can evaluate it to a morphism. We call the kernel the \emph{null fields}.
       
   110 \vspace{-3mm}
       
   111 $$\text{ev}\Bigg(\roundframe{d \mathfig{0.12}{definition/evaluation1}} - \roundframe{\mathfig{0.12}{definition/evaluation2}}\Bigg) = 0$$
       
   112 \end{block}
       
   113 \end{frame}
       
   114 
       
   115 \begin{frame}{\emph{Definition} of the blob complex, $k=0,1$}
       
   116 \begin{block}{Motivation}
       
   117 A \emph{local} construction, such that when $\cM$ is a ball, $\bc_*(\cM; \cC)$ is a resolution of $A(\cM,; \cC)$.
       
   118 \end{block}
       
   119 
       
   120 \begin{block}{}
       
   121 \center
       
   122 $\bc_0(\cM; \cC) = \cF(\cM)$, arbitrary fields on $\cM$.
       
   123 \end{block}
       
   124 
       
   125 \begin{block}{}
       
   126 \vspace{-1mm}
       
   127 $$\bc_1(\cM; \cC) = \setc{(B, u, r)}{\begin{array}{c}\text{$B$ an embedded ball}\\\text{$u \in \cF(B)$ in the kernel}\\ r \in \cF(\cM \setminus B)\end{array}}.$$
       
   128 \end{block}
       
   129 \vspace{-3.5mm}
       
   130 $$\mathfig{.5}{definition/single-blob}$$
       
   131 \vspace{-3mm}
       
   132 \begin{block}{}
       
   133 \vspace{-6mm}
       
   134 \begin{align*}
       
   135 d_1 : (B, u, r) & \mapsto u \circ r & \bc_0 / \im(d_1) \iso A(\cM; \cC)
       
   136 \end{align*}
       
   137 \end{block}
       
   138 \end{frame}
       
   139 
       
   140 \begin{frame}{Definition, $k=2$}
       
   141 \begin{block}{}
       
   142 \vspace{-1mm}
       
   143 $$\bc_2 = \bc_2^{\text{disjoint}} \oplus \bc_2^{\text{nested}}$$
       
   144 \end{block}
       
   145 \begin{block}{}
       
   146 \vspace{-5mm}
       
   147 \begin{align*}
       
   148 \bc_2^{\text{disjoint}} & =  \roundframe{\mathfig{0.5}{definition/disjoint-blobs}} & u_i \in \ker{\text{ev}_{B_i}}
       
   149 \end{align*}
       
   150 \vspace{-4mm}
       
   151 $$d_2 : (B_1, B_2, u_1, u_2, r) \mapsto (B_2, u_2, r \circ u_1) - (B_1, u_1, r \circ u_2)$$
       
   152 \end{block}
       
   153 \begin{block}{}
       
   154 \vspace{-5mm}
       
   155 \begin{align*}
       
   156 \bc_2^{\text{nested}} & = \roundframe{\mathfig{0.5}{definition/nested-blobs}} & u \in \ker{\text{ev}_{B_1}}
       
   157 \end{align*}
       
   158 \vspace{-4mm}
       
   159 $$d_2 : (B_1, B_2, u, r', r) \mapsto (B_2, u \circ r', r) - (B_1, u, r \circ r')$$
       
   160 \end{block}
    57 \end{frame}
   161 \end{frame}
    58 
   162 
    59 \end{document}
   163 \end{document}
    60 % ----------------------------------------------------------------
   164 % ----------------------------------------------------------------
    61 
   165