blob1.tex
changeset 30 e62258f302d6
parent 28 f844cffa5c03
child 31 e155c518ce31
equal deleted inserted replaced
29:15a43a691805 30:e62258f302d6
  1079 The homological degree of an element $a \in \bc_*^A(J)$
  1079 The homological degree of an element $a \in \bc_*^A(J)$
  1080 is the sum of the blob degree and the internal degree.
  1080 is the sum of the blob degree and the internal degree.
  1081 
  1081 
  1082 We first define $\bc_0^A(J)$ as a vector space by
  1082 We first define $\bc_0^A(J)$ as a vector space by
  1083 \begin{equation*}
  1083 \begin{equation*}
  1084 \bc_0^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \left(\{J_i\}, \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A) \right).
  1084 \bc_0^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
  1085 \end{equation*}
  1085 \end{equation*}
  1086 (That is, for each division of $J$ into finitely many subintervals,
  1086 (That is, for each division of $J$ into finitely many subintervals,
  1087 we have the tensor product of chains of diffeomorphisms from each subinterval to the standard interval,
  1087 we have the tensor product of chains of diffeomorphisms from each subinterval to the standard interval,
  1088 and a copy of $A$ for each subinterval.)
  1088 and a copy of $A$ for each subinterval.)
  1089 The internal degree of an element $(f_1 \tensor a_1, \ldots, f_n \tensor a_n)$ is the sum of the dimensions of the singular chains
  1089 The internal degree of an element $(f_1 \tensor a_1, \ldots, f_n \tensor a_n)$ is the sum of the dimensions of the singular chains
  1090 plus the sum of the homological degrees of the elements of $A$.
  1090 plus the sum of the homological degrees of the elements of $A$.
  1091 The differential is defined just by the graded Leibniz rule and the differentials on $\CD{J_i \to I}$ and on $A$.
  1091 The differential is defined just by the graded Leibniz rule and the differentials on $\CD{J_i \to I}$ and on $A$.
  1092 
  1092 
  1093 Next,
  1093 Next,
  1094 \begin{equation*}
  1094 \begin{equation*}
  1095 \bc_1^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \DirectSum_{T \in \cT_{1,n}} \left(\{J_i\}, T, \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A) \right).
  1095 \bc_1^A(J) = \DirectSum_{\substack{\{J_i\}_{i=1}^n \\ \mathclap{\bigcup_i J_i = J}}} \DirectSum_{T \in \cT_{1,n}} \Tensor_{i=1}^n (\CD{J_i \to I} \tensor A).
  1096 \end{equation*}
  1096 \end{equation*}
  1097 \end{defn}
  1097 \end{defn}
  1098 
  1098 
       
  1099 \begin{figure}[!ht]
       
  1100 \begin{equation*}
       
  1101 \mathfig{0.7}{associahedron/A4-vertices}
       
  1102 \end{equation*}
       
  1103 \caption{The vertices of the $k$-dimensional associahedron are indexed by binary trees on $k+2$ leaves.}
       
  1104 \label{fig:A4-vertices}
       
  1105 \end{figure}
       
  1106 
       
  1107 \begin{figure}[!ht]
       
  1108 \begin{equation*}
       
  1109 \mathfig{0.7}{associahedron/A4-faces}
       
  1110 \end{equation*}
       
  1111 \caption{The faces of the $k$-dimensional associahedron are indexed by trees with $2$ vertices on $k+2$ leaves.}
       
  1112 \label{fig:A4-vertices}
       
  1113 \end{figure}
       
  1114 
  1099 \newcommand{\tm}{\widetilde{m}}
  1115 \newcommand{\tm}{\widetilde{m}}
  1100 \newcommand{\ttm}{\widetilde{\widetilde{m}}}
  1116 
  1101 
  1117 Let $\tm_1(a) = a$.
  1102 Define $\ttm_k$ by
  1118 
       
  1119 We now define $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$, first giving an opaque formula, then explaining the combinatorics behind it.
       
  1120 \begin{align}
       
  1121 \notag \bdy(\tm_k(a_1 & \tensor \cdots \tensor a_k)) = \\
       
  1122 \label{eq:bdy-tm-k-1}   & \phantom{+} \sum_{i=1}^k (-1)^{\sum_{j=1}^{i-1} \deg(a_j)} \tm_k(a_1 \tensor \cdots \tensor \bdy a_i \tensor \cdots \tensor a_k) + \\
       
  1123 \label{eq:bdy-tm-k-2}   &          +  \sum_{\ell=1}^{k-1} \tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k) + \\
       
  1124 \label{eq:bdy-tm-k-3}   &          +  \sum_{\ell=1}^{k-1} \sum_{\ell'=0}^{l-1} \tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell + 1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell + 1}) \tensor \cdots \tensor a_k)
       
  1125 \end{align}
       
  1126 The first set of terms in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ just have $\bdy$ acting on each argument $a_i$.
       
  1127 The terms appearing in \eqref{eq:bdy-tm-k-2} and \eqref{eq:bdy-tm-k-3} are indexed by trees with $2$ vertices on $k+1$ leaves.
       
  1128 Note here that we have one more leaf than there arguments of $\tm_k$.
       
  1129 (See Figure \ref{fig:A4-vertices}, in which the rightmost branches are helpfully drawn in red.)
       
  1130 We will treat the vertices which involve a rightmost (red) branch differently from the vertices which only involve the first $k$ leaves.
       
  1131 The terms in \eqref{eq:bdy-tm-k-2} arise in the cases in which both
       
  1132 vertices are rightmost, and the corresponding term in $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ is a tensor product of the form
       
  1133 $$\tm_{\ell}(a_1 \tensor \cdots \tensor a_{\ell}) \tensor \tm_{k-\ell}(a_{\ell+1} \tensor \cdots \tensor a_k)$$
       
  1134 where $\ell + 1$ and $k - \ell + 1$ are the number of branches entering the vertices.
       
  1135 If only one vertex is rightmost, we get the term $$\tm_{\ell}(a_1 \tensor \cdots \tensor m_{k-\ell+1}(a_{\ell' + 1} \tensor \cdots \tensor a_{\ell' + k - \ell}) \tensor \cdots \tensor a_k)$$
       
  1136 in \eqref{eq:bdy-tm-k-3},
       
  1137 where again $\ell + 1$ is the number of branches entering the rightmost vertex, $k-\ell+1$ is the number of branches entering the other vertex, and $\ell'$ is the number of edges meeting the rightmost vertex which start to the left of the other vertex.
       
  1138 For example, we have
  1103 \begin{align*}
  1139 \begin{align*}
  1104 \ttm_k(a_1 \tensor \cdots \tensor a_k) & = m_k(a_1 \tensor \cdots \tensor a_k) \\
  1140 \bdy(\tm_2(a \tensor b)) & = \left(\tm_2(\bdy a \tensor b) + \tm_2(a \tensor \bdy b)\right) + \\
  1105 \ttm_k(a_1 \tensor \cdots \tensor a_{k-1} \tensor z) & = z \tensor \tm_{k-1}(a_1 \tensor \cdots \tensor a_{k-1}) \\
       
  1106 \intertext{and}
       
  1107 \ttm_k(a_1 \tensor \cdots \tensor a_{k-2} \tensor z \tensor a_k) & = z \tensor \tm_{k-2}(a_1 \tensor \cdots \tensor a_{k-2}) \tensor a_k.
       
  1108 \end{align*}
       
  1109 
       
  1110 Let $\tm_1(a) = a$.
       
  1111 
       
  1112 Then define
       
  1113 \begin{align*}
       
  1114 \bdy(\tm_k(a_1 \tensor \cdots \tensor a_k)) & = \sum_{j=1}^{k} \tm_k(a_1 \tensor \cdots \tensor \bdy a_j \tensor \cdots \tensor a_k) + \\
       
  1115    & z \perp \sum_{q=2}^{k-1} \sum_{p=1}^{k-q+2} \ttm_{k-q+1}(a_1 \tensor \cdots a_{p-1} \tensor \ttm_q(a_p \tensor \cdots \tensor a_{p+q-1}) \tensor a_{p+q} \tensor \cdots \tensor a_{k+1}).
       
  1116 \end{align*}
       
  1117 where here $a_{k+1}$ is just notation for $z$.
       
  1118 \todo{err... here I mean $z \perp z \tensor x = x$...}
       
  1119 \todo{actually, if you let $q$ start from 1 you don't need the first term}
       
  1120 
       
  1121 \begin{align*}
       
  1122 \bdy(\tm_2(a \tensor b)) & = (\tm_2(\bdy a \tensor b) + \tm_2(a \tensor \bdy b)) + \\
       
  1123                          & \qquad + a \tensor b + \\
  1141                          & \qquad + a \tensor b + \\
  1124                          & \qquad + m_2(a \tensor b) \\
  1142                          & \qquad + m_2(a \tensor b) \\
  1125 \bdy(\tm_3(a \tensor b \tensor c)) & = (\tm_3(\bdy a \tensor b \tensor c) + \tm_3(a \tensor \bdy b \tensor c) + \tm_3(a \tensor b \tensor \bdy c)) + \\
  1143 \bdy(\tm_3(a \tensor b \tensor c)) & = \left(\tm_3(\bdy a \tensor b \tensor c) + \tm_3(a \tensor \bdy b \tensor c) + \tm_3(a \tensor b \tensor \bdy c)\right) + \\
  1126                                    & + (\tm_2(a \tensor b) \tensor c + a \tensor \tm_2(b \tensor c)) + \\
  1144                                    & \qquad + \left(\tm_2(a \tensor b) \tensor c + a \tensor \tm_2(b \tensor c)\right) + \\
  1127                                    & + (\tm_2(m_2(a \tensor b) \tensor c) + \tm_2(a, m_2(b \tensor c)) + m_3(a \tensor b \tensor c)) \\
  1145                                    & \qquad + \left(\tm_2(m_2(a \tensor b) \tensor c) + \tm_2(a, m_2(b \tensor c)) + m_3(a \tensor b \tensor c)\right)
  1128 \bdy(\tm_4(a \tensor b \tensor c \tensor d)) & = (\tm_4(\bdy a \tensor b \tensor c \tensor d) + \cdots + \tm_4(a \tensor b \tensor c \tensor \bdy d)) + \\
       
  1129                                              & + (\tm_3(a \tensor b \tensor c) \tensor d + \tm_2(a \tensor b) \tensor \tm_2(c \tensor d) + a \tensor \tm_3(b \tensor c \tensor d)) + \\
       
  1130                                              & + (\tm_3(m_2(a \tensor b) \tensor c \tensor d) + \tm_3(a \tensor m_2(b \tensor c) \tensor d) + \tm_3(a \tensor b \tensor m_2(c \tensor d)) + \\
       
  1131                                              & + \tm_2(m_3(a \tensor b \tensor c) \tensor d) + \tm_2(a \tensor m_3(b \tensor c \tensor d)) + m_4(a \tensor b \tensor c \tensor d)) \\
       
  1132 %d(\tm_k(x_1 \tensor \cdots \tensor x_k)) & = \sum_{i=1}^k (-1)^{\sum_{j=1}^{i-1} \deg(x_j)} \tm_k(x_1 \tensor \cdots \tensor d x_i \tensor \cdots \tensor x_k) + \\
       
  1133 %                                         & \qquad + + \\
       
  1134 %                                         & \qquad +
       
  1135 \end{align*}
  1146 \end{align*}
       
  1147 \begin{align*}
       
  1148 \bdy(& \tm_4(a \tensor b \tensor c \tensor d)) = \left(\tm_4(\bdy a \tensor b \tensor c \tensor d) + \cdots + \tm_4(a \tensor b \tensor c \tensor \bdy d)\right) + \\
       
  1149                                              & + \left(\tm_3(a \tensor b \tensor c) \tensor d + \tm_2(a \tensor b) \tensor \tm_2(c \tensor d) + a \tensor \tm_3(b \tensor c \tensor d)\right) + \\
       
  1150                                              & + \left(\tm_3(m_2(a \tensor b) \tensor c \tensor d) + \tm_3(a \tensor m_2(b \tensor c) \tensor d) + \tm_3(a \tensor b \tensor m_2(c \tensor d))\right. + \\
       
  1151                                              & + \left.\tm_2(m_3(a \tensor b \tensor c) \tensor d) + \tm_2(a \tensor m_3(b \tensor c \tensor d)) + m_4(a \tensor b \tensor c \tensor d)\right) \\
       
  1152 \end{align*}
       
  1153 See Figure \ref{fig:A4-terms}, comparing it against Figure \ref{fig:A4-faces}, to see this illustrated in the case $k=4$. There the $3$ faces closest
       
  1154 to the top of the diagram have two rightmost vertices, while the other $6$ faces have only one.
       
  1155 
       
  1156 \begin{figure}[!ht]
       
  1157 \begin{equation*}
       
  1158 \mathfig{1.0}{associahedron/A4-terms}
       
  1159 \end{equation*}
       
  1160 \caption{The terms of $\bdy(\tm_k(a_1 \tensor \cdots \tensor a_k))$ correspond to the faces of the $k-1$ dimensional associahedron.}
       
  1161 \label{fig:A4-terms}
       
  1162 \end{figure}
  1136 
  1163 
  1137 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
  1164 \nn{Need to let the input $n$-category $C$ be a graded thing (e.g. DG
  1138 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
  1165 $n$-category or $A_\infty$ $n$-category). DG $n$-category case is pretty
  1139 easy, I think, so maybe it should be done earlier??}
  1166 easy, I think, so maybe it should be done earlier??}
  1140 
  1167