talks/20100625-StonyBrook/categorification.tex
changeset 394 eac3c57c808a
parent 388 eec4b1f9cfc2
equal deleted inserted replaced
389:facac77e9a72 394:eac3c57c808a
    51  transparent=5,
    51  transparent=5,
    52 % still covered={\opaqueness<1>{15}\opaqueness<2>{10}\opaqueness<3>{5}\opaqueness<4->{2}},
    52 % still covered={\opaqueness<1>{15}\opaqueness<2>{10}\opaqueness<3>{5}\opaqueness<4->{2}},
    53  again covered={\opaqueness<1->{50}}
    53  again covered={\opaqueness<1->{50}}
    54 }
    54 }
    55 
    55 
       
    56 \uncover<2>{
    56 \node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$};
    57 \node[red] (blobs) at (0,0) {$H(\bc_*(\cM; \cC))$};
    57 \uncover<2>{
       
    58 \node[blue] (skein) at (4,0) {$\cA(\cM; \cC)$};
    58 \node[blue] (skein) at (4,0) {$\cA(\cM; \cC)$};
    59 \node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)};
    59 \node[below=5pt, description] (skein-label) at (skein) {(the usual TQFT Hilbert space)};
    60 \path[->](blobs) edge node[above] {$*= 0$} (skein);
    60 \path[->](blobs) edge node[above] {$*= 0$} (skein);
    61 }
    61 }
    62 
    62 
    77 
    77 
    78 \section{TQFTs}
    78 \section{TQFTs}
    79 
    79 
    80 \begin{frame}{$n$-categories}
    80 \begin{frame}{$n$-categories}
    81 \begin{block}{There are many definitions of $n$-categories!}
    81 \begin{block}{There are many definitions of $n$-categories!}
    82 For most of what follows, I'll draw $2$-dimensional pictures and rely on your intuition for pivotal $2$-categories. 
    82 For most of what follows, I'll draw $2$-dimensional pictures and rely on your intuition for pivotal categories. 
    83 \end{block}
    83 \end{block}
    84 \begin{block}{We have another definition: \emph{topological $n$-categories}}
    84 \begin{block}{We have yet another definition: \emph{topological $n$-categories}}
    85 \begin{itemize}
    85 \begin{itemize}
    86 %\item A set $\cC(B^k)$ for every $k$-ball, $0 \leq k < n$.
    86 %\item A set $\cC(B^k)$ for every $k$-ball, $0 \leq k < n$.
    87 \item A vector space $\cC(B^n)$ for every $n$-ball $B$.
    87 \item A vector space $\cC(B^n)$ for every $n$-ball $B$.
    88 %\item From these, inductively
    88 %\item From these, inductively
    89 %\begin{itemize}
    89 %\begin{itemize}
   144 \vspace{4mm}
   144 \vspace{4mm}
   145 %\begin{itemize}
   145 %\begin{itemize}
   146 %\item We can also associate a $k$-category to an $n-k$-manifold.
   146 %\item We can also associate a $k$-category to an $n-k$-manifold.
   147 %\item We don't assign a number to an $n+1$-manifold (a `decapitated' extended TQFT).
   147 %\item We don't assign a number to an $n+1$-manifold (a `decapitated' extended TQFT).
   148 %\end{itemize}
   148 %\end{itemize}
   149 $\cA(Y \times [0,1])$ is a $1$-category, and when $Y \subset \bdy X$, $\cA(X)$ is a module over $\cA(Y \times [0,1])$.
   149 $\cA(Y^{n-1} \times [0,1])$ is a $1$-category, and when $Y \subset \bdy X$, $\cA(X)$ is a module over $\cA(Y \times [0,1])$.
   150 \begin{thm}[Gluing formula]
   150 \begin{thm}[Gluing formula]
   151 When $Y \sqcup Y^{\text{op}} \subset \bdy X$,
   151 When $Y \sqcup Y^{\text{op}} \subset \bdy X$,
   152 \vspace{-1mm}
   152 \vspace{-1mm}
   153 \[
   153 \[
   154 	\cA(X \bigcup_Y \selfarrow) \iso \cA(X) \bigotimes_{\cA(Y \times [0,1])} \selfarrow.
   154 	\cA(X \bigcup_Y \selfarrow) \iso \cA(X) \bigotimes_{\cA(Y \times [0,1])} \selfarrow.
   334 \end{frame}
   334 \end{frame}
   335 
   335 
   336 \mode<beamer>{
   336 \mode<beamer>{
   337 \begin{frame}{An action of $\CH{\cM}$}
   337 \begin{frame}{An action of $\CH{\cM}$}
   338 \begin{proof}
   338 \begin{proof}
   339 \begin{description}
   339 Uniqueness:
   340 \item[Step 1] If $\cM=B^n$ or a union of balls, there's a unique chain map, since $\bc_*(B^n; \cC) \htpy \cC$ is concentrated in homological degree $0$.
   340 \begin{description}
   341 \item[Step 2] Fix an open cover $\cU$ of balls. \\ A family of homeomorphisms $P^k \to \Homeo(\cM)$ can be broken up in into pieces, each of which is supported in at most $k$ open sets from $\cU$. \qedhere
   341 \item[Step 1] If $\cM=B^n$ or a union of balls, there's a unique (up to homotopy) chain map, since $\bc_*(B^n; \cC) \htpy \cC$ is concentrated in homological degree $0$.
       
   342 \item[Step 2] Fix an open cover $\cU$ of balls. \\ A family of homeomorphisms $P^k \to \Homeo(\cM)$ can be broken up in into pieces, each of which is supported in at most $k$ open sets from $\cU$. \end{description}
       
   343 Existence:
       
   344 \begin{description}
       
   345 \item[Step 3] Show that all of the choices available above can be made consistently, using the method of acyclic models. \qedhere
   342 \end{description}
   346 \end{description}
   343 \end{proof}
   347 \end{proof}
   344 \end{frame}
   348 \end{frame}
   345 }
   349 }
   346 
   350