text/a_inf_blob.tex
changeset 211 ef127ac682bd
parent 188 4f7300effe49
child 212 c2d2a8f8d70c
equal deleted inserted replaced
210:5200a0eac737 211:ef127ac682bd
   249 Theorem \ref{product_thm}.
   249 Theorem \ref{product_thm}.
   250 \end{proof}
   250 \end{proof}
   251 
   251 
   252 
   252 
   253 \medskip
   253 \medskip
       
   254 
       
   255 The next theorem shows how to reconstruct a mapping space from local data.
       
   256 Let $T$ be a topological space, let $M$ be an $n$-manifold, 
       
   257 and recall the $A_\infty$ $n$-category $\pi^\infty_{\leq n}(T)$ 
       
   258 of Example \ref{ex:chains-of-maps-to-a-space}.
       
   259 Think of $\pi^\infty_{\leq n}(T)$ as encoding everything you would ever
       
   260 want to know about spaces of maps of $k$-balls into $T$ ($k\le n$).
       
   261 To simplify notation, let $\cT = \pi^\infty_{\leq n}(T)$.
       
   262 
       
   263 \begin{thm} \label{thm:map-recon}
       
   264 $\cB^\cT(M) \simeq C_*(\Maps(M\to T))$.
       
   265 \end{thm}
       
   266 \begin{proof}
       
   267 \nn{obvious map in one direction; use \ref{extension_lemma_b}; ...}
       
   268 \end{proof}
       
   269 
       
   270 \nn{should also mention version where we enrich over
       
   271 spaces rather than chain complexes; should comment on Lurie's (and others')  similar result
       
   272 for the $E_\infty$ case, and mention that our version does not require 
       
   273 any connectivity assumptions}
       
   274 
       
   275 \medskip
   254 \hrule
   276 \hrule
   255 \medskip
   277 \medskip
   256 
   278 
   257 \nn{to be continued...}
   279 \nn{to be continued...}
   258 \medskip
   280 \medskip