blob1.tex
changeset 34 f46e6ff9f951
parent 33 0535a42fb804
child 35 0adb47730c7a
equal deleted inserted replaced
33:0535a42fb804 34:f46e6ff9f951
   984 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
   984 A(J) \tensor A(J' \cup J'') \ar[rr]_{\gl_{J, J' \cup J''}} &&
   985 A(J \cup J' \cup J'')
   985 A(J \cup J' \cup J'')
   986 }
   986 }
   987 \end{equation*}
   987 \end{equation*}
   988 commutes.
   988 commutes.
       
   989 \item The gluing and evaluation maps are compatible.
       
   990 \nn{give diagram, or just say ``in the obvious way", or refer to diagram in blob eval map section?}
   989 \end{itemize}
   991 \end{itemize}
   990 \end{defn}
   992 \end{defn}
   991 
   993 
   992 \begin{rem}
   994 \begin{rem}
   993 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, \bullet)$ together
   995 We can restrict the evaluation map to $0$-chains, and see that $J \mapsto A(J)$ and $(\phi:J \to J') \mapsto \ev_{J \to J'}(\phi, \bullet)$ together
  1056 Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over
  1058 Any manifold $X$ with $\bdy X = Y$ (or indeed just with $Y$ a codimension $0$-submanifold of $\bdy X$) becomes a topological $A_\infty$ module over
  1057 $\bc_*(Y)$, the topological $A_\infty$ category described above. For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
  1059 $\bc_*(Y)$, the topological $A_\infty$ category described above. For each interval $K$, we have $M(K) = \bc_*((Y \times K) \cup_Y X)$.
  1058 (Here we glue $Y \times pt$ to $X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
  1060 (Here we glue $Y \times pt$ to $X$, where $pt$ is the marked point of $K$.) Again, the evaluation and gluing maps come directly from Properties
  1059 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1061 \ref{property:evaluation} and \ref{property:gluing-map} respectively.
  1060 
  1062 
  1061 \todo{Bimodules, and gluing}
  1063 The definition of a bimodule is like the definition of a module,
       
  1064 except that we have two disjoint marked intervals $K$ and $L$, one with a marked point
       
  1065 on the upper boundary and the other with a marked point on the lower boundary.
       
  1066 There are evaluation maps corresponding to gluing unmarked intervals
       
  1067 to the unmarked ends of $K$ and $L$.
       
  1068 
       
  1069 Let $X$ be an $n$-manifold with a copy of $Y \du -Y$ embedded as a 
       
  1070 codimension-0 submanifold of $\bdy X$.
       
  1071 Then the the assignment $K,L \mapsto \bc*(X \cup_Y (Y\times K) \cup_{-Y} (-Y\times L))$ has the 
       
  1072 structure of a topological $A_\infty$ bimodule over $\bc_*(Y)$.
       
  1073 
       
  1074 Next we define the coend
       
  1075 (or gluing or tensor product or self tensor product, depending on the context)
       
  1076 $\gl(M)$ of a topological $A_\infty$ bimodule $M$.
       
  1077 $\gl(M)$ is defined to be the universal thing with the following structure.
       
  1078 
       
  1079 \nn{...}
       
  1080 
       
  1081 
       
  1082 
  1062 
  1083 
  1063 \todo{the motivating example $C_*(\maps(X, M))$}
  1084 \todo{the motivating example $C_*(\maps(X, M))$}
  1064 
  1085 
  1065 \todo{higher $n$}
  1086 \todo{higher $n$}
  1066 
  1087