text/ncat.tex
changeset 426 8aca80203f9d
parent 425 8f488e576afd
child 435 84834a1fdd50
child 437 93ce0ba3d2d7
--- a/text/ncat.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/ncat.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -97,7 +97,7 @@
 $1\le k \le n$.
 At first it might seem that we need another axiom for this, but in fact once we have
 all the axioms in this subsection for $0$ through $k-1$ we can use a colimit
-construction, as described in Subsection \ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
+construction, as described in \S\ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
 to spheres (and any other manifolds):
 
 \begin{lem}
@@ -746,7 +746,7 @@
 to be the set of all $C$-labeled embedded cell complexes of $X\times F$.
 Define $\cC(X; c)$, for $X$ an $n$-ball,
 to be the dual Hilbert space $A(X\times F; c)$.
-(See Subsection \ref{sec:constructing-a-tqft}.)
+(See \S\ref{sec:constructing-a-tqft}.)
 \end{example}
 
 \noop{
@@ -1508,7 +1508,7 @@
 \label{ss:module-morphisms}
 
 In order to state and prove our version of the higher dimensional Deligne conjecture
-(Section \ref{sec:deligne}),
+(\S\ref{sec:deligne}),
 we need to define morphisms of $A_\infty$ $1$-category modules and establish
 some of their elementary properties.
 
@@ -1877,7 +1877,7 @@
 of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
 by $\cA_i$-$\cA_{i+1}$ bimodules $\cM_i$.
 (See Figure \ref{feb21c}.)
-To this data we can apply the coend construction as in Subsection \ref{moddecss} above
+To this data we can apply the coend construction as in \S\ref{moddecss} above
 to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
 This amounts to a definition of taking tensor products of $0$-sphere module over $n$-categories.