search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
authorKevin Walker <kevin@canyon23.net>
Sun, 11 Jul 2010 14:38:48 -0600
changeset 426 8aca80203f9d
parent 425 8f488e576afd
child 427 e02bcd9f63c1
search & replace: s/((sub?)section|appendix)\s+\\ref/\S\ref/
text/a_inf_blob.tex
text/appendixes/comparing_defs.tex
text/basic_properties.tex
text/deligne.tex
text/evmap.tex
text/intro.tex
text/ncat.tex
text/tqftreview.tex
--- a/text/a_inf_blob.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/a_inf_blob.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -3,7 +3,7 @@
 \section{The blob complex for $A_\infty$ $n$-categories}
 \label{sec:ainfblob}
 Given an $A_\infty$ $n$-category $\cC$ and an $n$-manifold $M$, we make the anticlimactically tautological definition of the blob
-complex $\bc_*(M;\cC)$ to be the homotopy colimit $\cl{\cC}(M)$ of Section \ref{ss:ncat_fields}.
+complex $\bc_*(M;\cC)$ to be the homotopy colimit $\cl{\cC}(M)$ of \S\ref{ss:ncat_fields}.
 
 We will show below 
 in Corollary \ref{cor:new-old}
@@ -53,7 +53,7 @@
 
 
 \begin{proof}
-We will use the concrete description of the colimit from Subsection \ref{ss:ncat_fields}.
+We will use the concrete description of the colimit from \S\ref{ss:ncat_fields}.
 
 First we define a map 
 \[
@@ -87,7 +87,7 @@
 such that $a$ splits along $K_0\times F$ and $b$ is a generator appearing
 in an iterated boundary of $a$ (this includes $a$ itself).
 (Recall that $\ol{K} = (K_0,\ldots,K_l)$ denotes a chain of decompositions;
-see Subsection \ref{ss:ncat_fields}.)
+see \S\ref{ss:ncat_fields}.)
 By $(b, \ol{K})$ we really mean $(b^\sharp, \ol{K})$, where $b^\sharp$ is 
 $b$ split according to $K_0\times F$.
 To simplify notation we will just write plain $b$ instead of $b^\sharp$.
--- a/text/appendixes/comparing_defs.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/appendixes/comparing_defs.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -3,7 +3,7 @@
 \section{Comparing $n$-category definitions}
 \label{sec:comparing-defs}
 
-In this appendix we relate the ``topological" category definitions of Section \ref{sec:ncats}
+In this appendix we relate the ``topological" category definitions of \S\ref{sec:ncats}
 to more traditional definitions, for $n=1$ and 2.
 
 \nn{cases to cover: (a) plain $n$-cats for $n=1,2$; (b) $n$-cat modules for $n=1$, also 2?;
--- a/text/basic_properties.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/basic_properties.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -115,4 +115,4 @@
 }
 
 This map is very far from being an isomorphism, even on homology.
-We fix this deficit in Section \ref{sec:gluing} below.
+We fix this deficit in \S\ref{sec:gluing} below.
--- a/text/deligne.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/deligne.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -44,7 +44,7 @@
 We emphasize that in $\hom(\bc^C_*(I), \bc^C_*(I))$ we are thinking of $\bc^C_*(I)$ as a module
 for the $A_\infty$ 1-category associated to $\bd I$, and $\hom$ means the 
 morphisms of such modules as defined in 
-Subsection \ref{ss:module-morphisms}.
+\S\ref{ss:module-morphisms}.
 
 We can think of a fat graph as encoding a sequence of surgeries, starting at the bottommost interval
 of Figure \ref{delfig1} and ending at the topmost interval.
@@ -215,7 +215,7 @@
 \]
 which satisfy the operad compatibility conditions.
 On $C_0(FG^n_{\ol{M}\ol{N}})$ this agrees with the chain map $p$ defined above.
-When $k=0$, this coincides with the $C_*(\Homeo(M_0\to N_0))$ action of Section \ref{sec:evaluation}.
+When $k=0$, this coincides with the $C_*(\Homeo(M_0\to N_0))$ action of \S\ref{sec:evaluation}.
 \end{thm}
 
 If, in analogy to Hochschild cochains, we define elements of $\hom(M, N)$
--- a/text/evmap.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/evmap.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -69,7 +69,7 @@
 Furthermore, one can choose the homotopy so that its support is equal to the support of $x$.
 \end{lemma}
 
-The proof will be given in Appendix \ref{sec:localising}.
+The proof will be given in \S\ref{sec:localising}.
 
 \medskip
 
--- a/text/intro.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/intro.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -139,7 +139,7 @@
 in order to better integrate it into the current intro.}
 
 As a starting point, consider TQFTs constructed via fields and local relations.
-(See Section \ref{sec:tqftsviafields} or \cite{kw:tqft}.)
+(See \S\ref{sec:tqftsviafields} or \cite{kw:tqft}.)
 This gives a satisfactory treatment for semisimple TQFTs
 (i.e.\ TQFTs for which the cylinder 1-category associated to an
 $n{-}1$-manifold $Y$ is semisimple for all $Y$).
--- a/text/ncat.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/ncat.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -97,7 +97,7 @@
 $1\le k \le n$.
 At first it might seem that we need another axiom for this, but in fact once we have
 all the axioms in this subsection for $0$ through $k-1$ we can use a colimit
-construction, as described in Subsection \ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
+construction, as described in \S\ref{ss:ncat-coend} below, to extend $\cC_{k-1}$
 to spheres (and any other manifolds):
 
 \begin{lem}
@@ -746,7 +746,7 @@
 to be the set of all $C$-labeled embedded cell complexes of $X\times F$.
 Define $\cC(X; c)$, for $X$ an $n$-ball,
 to be the dual Hilbert space $A(X\times F; c)$.
-(See Subsection \ref{sec:constructing-a-tqft}.)
+(See \S\ref{sec:constructing-a-tqft}.)
 \end{example}
 
 \noop{
@@ -1508,7 +1508,7 @@
 \label{ss:module-morphisms}
 
 In order to state and prove our version of the higher dimensional Deligne conjecture
-(Section \ref{sec:deligne}),
+(\S\ref{sec:deligne}),
 we need to define morphisms of $A_\infty$ $1$-category modules and establish
 some of their elementary properties.
 
@@ -1877,7 +1877,7 @@
 of these points labeled by $n$-categories $\cA_i$ ($0\le i\le l$) and the marked points labeled
 by $\cA_i$-$\cA_{i+1}$ bimodules $\cM_i$.
 (See Figure \ref{feb21c}.)
-To this data we can apply the coend construction as in Subsection \ref{moddecss} above
+To this data we can apply the coend construction as in \S\ref{moddecss} above
 to obtain an $\cA_0$-$\cA_l$ $0$-sphere module and, forgetfully, an $n{-}1$-category.
 This amounts to a definition of taking tensor products of $0$-sphere module over $n$-categories.
 
--- a/text/tqftreview.tex	Sun Jul 11 14:31:56 2010 -0600
+++ b/text/tqftreview.tex	Sun Jul 11 14:38:48 2010 -0600
@@ -16,17 +16,17 @@
 A system of fields is very closely related to an $n$-category.
 In one direction, Example \ref{ex:traditional-n-categories(fields)}
 shows how to construct a system of fields from a (traditional) $n$-category.
-We do this in detail for $n=1,2$ (Subsection \ref{sec:example:traditional-n-categories(fields)}) 
+We do this in detail for $n=1,2$ (\S\ref{sec:example:traditional-n-categories(fields)}) 
 and more informally for general $n$.
 In the other direction, 
-our preferred definition of an $n$-category in Section \ref{sec:ncats} is essentially
+our preferred definition of an $n$-category in \S\ref{sec:ncats} is essentially
 just a system of fields restricted to balls of dimensions 0 through $n$;
 one could call this the ``local" part of a system of fields.
 
 Since this section is intended primarily to motivate
-the blob complex construction of Section \ref{sec:blob-definition}, 
+the blob complex construction of \S\ref{sec:blob-definition}, 
 we suppress some technical details.
-In Section \ref{sec:ncats} the analogous details are treated more carefully.
+In \S\ref{sec:ncats} the analogous details are treated more carefully.
 
 \medskip
 
@@ -71,7 +71,7 @@
 \end{example}
 
 Now for the rest of the definition of system of fields.
-(Readers desiring a more precise definition should refer to Subsection \ref{ss:n-cat-def}
+(Readers desiring a more precise definition should refer to \S\ref{ss:n-cat-def}
 and replace $k$-balls with $k$-manifolds.)
 \begin{enumerate}
 \item There are boundary restriction maps $\cC_k(X) \to \cC_{k-1}(\bd X)$,