text/smallblobs.tex
author scott@6e1638ff-ae45-0410-89bd-df963105f760
Mon, 29 Mar 2010 05:41:28 +0000
changeset 225 32a76e8886d1
parent 224 9faf1f7fad3e
child 233 0488412c274b
permissions -rw-r--r--
minor tweaks on small blobs

%!TEX root = ../blob1.tex
\nn{Not sure where this goes yet: small blobs, unfinished:}

Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$.

\begin{thm}[Small blobs]
The inclusion $i: \bc^{\cU}_*(M) \into \bc_*(M)$ is a homotopy equivalence.
\end{thm}
\begin{proof}
We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity.

On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.

On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\eset(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\beta(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
$$s(b) = \restrict{\phi_\beta}{x_0=0}(b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob.
\todo{Does $s$ actually land in small blobs?}
We now check that $s$, as defined so far, is a chain map, calculating
\begin{align*}
\bdy (s(b)) & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{x_0=0})(\bdy b) \\
		 & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + \restrict{\phi_\eset}{x_0=0}(\bdy b) - \restrict{\phi_\beta}{x_0=0}(\bdy b) \\
		 & = \restrict{\phi_\eset}{x_0=0}(\bdy b) \\
		 & = s(\bdy b)
\end{align*}
Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) + \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and the first term is the action of a one parameter family of homeomorphisms on a $1$-blob, and the second term is the action of a two parameter family of homeomorphisms on a $0$-blob, so both are $2$-blobs).
\begin{align*}
(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) + \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
	& =  \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_\beta}{x_1=0}(b) - \phi_\beta(\bdy b) + (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
	& =  \restrict{\phi_\beta}{x_0=0}(b) - b - \phi_\beta(\bdy b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) + \phi_\eset(\bdy b) \\
	& = \restrict{\phi_\beta}{x_0=0}(b) - b + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) \\
	& = (i \circ s - \id)(b)
\end{align*}

We now describe the general case. For a $k$-blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{0, \ldots, k-1\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{0,\ldots,k-1\}} \in \bc_0(M)$, and $d b_\cS = \sum_{i \notin \cS} \pm  b_{\cS \cup \{i\}}$.
Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.

For a $2$-blob $b$, with balls $\beta$, $s$ is the sum of $5$ terms. Again, there is a term that makes $\beta$ small, while the others `get the boundary right'. It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement.
\begin{figure}[!ht]
\todo{}
\caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.}
\end{figure}

Next, we'll choose a `shrinking system' for $\cU$, namely for each increasing sequence of blob configurations
$\beta_0 \prec \beta_1 \prec \cdots \prec \beta_m$, an $m+1$ parameter family of diffeomorphisms
$\phi_{\beta_0 \prec \cdots \prec \beta_m} : \Delta^{m+1} \to \Diff{M}$, such that
\begin{itemize}
\item for any $x$ with $x_0 = 0$, $\phi_{\beta_0 \prec \cdots \prec \beta_m}(x)(\beta_m)$ is subordinate to $\cU$, and
\item for each $i = 1, \ldots, m$,
\begin{align*}
\phi_{\beta_0 \prec \cdots \prec \beta_m}&(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_m) = \\ &\phi_{\beta_0 \prec \cdots \prec \beta_{i-1} \prec \beta_{i+1} \prec \cdots \prec \beta_m}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_m).
\end{align*}
\end{itemize}
It's not immediately obvious that it's possible to make such choices, but it follows readily from the following Lemma.

When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ `makes $\beta$ small' if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$.

\begin{lem}
\label{lem:extend-small-homeomorphisms}
Fix a collection of disjoint embedded balls $\beta$ in $M$. Suppose we have a map $f :  X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ small.
\end{lem}
\begin{proof}
Fix a metric on $M$, and pick $\epsilon > 0$ so every $\epsilon$ ball in $M$ is contained in some open set of $\cU$. First construct a family of homeomorphisms $g_s : M \to M$, $s \in [1,\infty)$ so $g_1$ is the identity, and $g_s(\beta_i) \subset \beta_i$ and $\rad g_s(\beta_i) \leq \frac{1}{s} \rad \beta_i$ for each ball $\beta_i$. 
There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$.

If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ small for all $x \in X$.
\end{proof}

We'll need a stronger version of Property \ref{property:evaluation}; while the evaluation map $ev: \CD{M} \tensor \bc_*(M) \to \bc_*(M)$ is not unique, it has an up-to-homotopy representative (satisfying the usual conditions) which restricts to become a chain map $ev: \CD{M} \tensor \bc^{\cU}_*(M) \to \bc^{\cU}_*(M)$. The proof is straightforward: when deforming the family of diffeomorphisms to shrink its supports to a union of open sets, do so such that those open sets are subordinate to the cover.

Now define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$. The map $s: \bc_0(M) \to \bc^{\cU}_0(M)$ is just the identity; blob diagrams without blobs are automatically compatible with any cover. Given a blob diagram $b$, we'll abuse notation and write $\phi_b$ to mean $\phi_\beta$ for the blob configuration $\beta$ underlying $b$. We have
$$s(b) = \sum_{i} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$
where the sum is over sequences $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m < k$, $i(b)$ denotes the increasing sequence of blob configurations
$$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
and, as usual, $i(b)$ denotes $b$ with blobs $i_1, \ldots i_m$ erased. We'll also write
$$s(b) = \sum_{m=0}^{k-1} \sum_{\norm{i}=m} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
arranging the sum according to the length $\norm{i}$ of $i$.


We need to check that $s$ is a chain map, and that the image of $s$ in fact lies in $\bc^{\cU}_*(M)$. \todo{} Calculate
\begin{align*}
\bdy(s(b)) & = \sum_{m=0}^{k-1} \sum_{\norm{i}=m} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
                & = \sum_{m=0}^{k-1} \sum_{\norm{i}=m} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \\
\intertext{and telescoping the sum}
		& = \sum_{m=0}^{k-2} \left(\sum_{\norm{i}=m}  (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \right) + \left(\sum_{\norm{i}=m+1} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0} \tensor b_i\right) \right) + \\
		& \qquad + (-1)^{k-1} \sum_{\norm{i}=k-1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \\
		& = (-1)^{k-1} \sum_{\norm{i}=k-1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right)
\end{align*}

Next, we define the homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ by
$$h(b) = \sum_{i} ev(\phi_{i(b)}, b_i).$$
\todo{and check that it's the right one...}
\end{proof}