text/smallblobs.tex
author scott@6e1638ff-ae45-0410-89bd-df963105f760
Mon, 29 Mar 2010 05:41:28 +0000
changeset 225 32a76e8886d1
parent 224 9faf1f7fad3e
child 233 0488412c274b
permissions -rw-r--r--
minor tweaks on small blobs
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
146
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 82
diff changeset
     1
%!TEX root = ../blob1.tex
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 82
diff changeset
     2
\nn{Not sure where this goes yet: small blobs, unfinished:}
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     3
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     4
Fix $\cU$, an open cover of $M$. Define the `small blob complex' $\bc^{\cU}_*(M)$ to be the subcomplex of $\bc_*(M)$ of all blob diagrams in which every blob is contained in some open set of $\cU$.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     5
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
     6
\begin{thm}[Small blobs]
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     7
The inclusion $i: \bc^{\cU}_*(M) \into \bc_*(M)$ is a homotopy equivalence.
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
     8
\end{thm}
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
     9
\begin{proof}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    10
We begin by describing the homotopy inverse in small degrees, to illustrate the general technique.
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    11
We will construct a chain map $s:  \bc_*(M) \to \bc^{\cU}_*(M)$ and a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $\bdy h+h \bdy=i\circ s - \id$. The composition $s \circ i$ will just be the identity.
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    12
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    13
On $0$-blobs, $s$ is just the identity; a blob diagram without any blobs is compatible with any open cover. Nevertheless, we'll begin introducing nomenclature at this point: for configuration $\beta$ of disjoint embedded balls in $M$ we'll associate a one parameter family of homeomorphisms $\phi_\beta : \Delta^1 \to \Homeo(M)$ (here $\Delta^m$ is the standard simplex $\setc{\mathbf{x} \in \Real^{m+1}}{\sum_{i=0}^m x_i = 1}$). For $0$-blobs, where $\beta = \eset$, all these homeomorphisms are just the identity.
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    14
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    15
On a $1$-blob $b$, with ball $\beta$, $s$ is defined as the sum of two terms. Essentially, the first term `makes $\beta$ small', while the other term `gets the boundary right'. First, pick a one-parameter family $\phi_\beta : \Delta^1 \to \Homeo(M)$ of homeomorphisms, so $\phi_\beta(1,0)$ is the identity and $\phi_\beta(0,1)$ makes the ball $\beta$ small. Next, pick a two-parameter family $\phi_{\eset \prec \beta} : \Delta^2 \to \Homeo(M)$ so that $\phi_{\eset \prec \beta}(0,x_1,x_2)$ makes the ball $\beta$ small for all $x_1+x_2=1$, while $\phi_{\eset \prec \beta}(x_0,0,x_2) = \phi_\eset(x_0,x_2)$ and $\phi_{\eset \prec \beta}(x_0,x_1,0) = \phi_\beta(x_0,x_1)$. (It's perhaps not obvious that this is even possible --- see Lemma \ref{lem:extend-small-homeomorphisms} below.) We now define $s$ by
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    16
$$s(b) = \restrict{\phi_\beta}{x_0=0}(b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b).$$
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    17
Here, $\restrict{\phi_\beta}{x_0=0} = \phi_\beta(0,1)$ is just a homeomorphism, which we apply to $b$, while $\restrict{\phi_{\eset \prec \beta}}{x_0=0}$ is a one parameter family of homeomorphisms which acts on the $0$-blob $\bdy b$ to give a $1$-blob.
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    18
\todo{Does $s$ actually land in small blobs?}
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    19
We now check that $s$, as defined so far, is a chain map, calculating
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    20
\begin{align*}
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    21
\bdy (s(b)) & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + (\bdy \restrict{\phi_{\eset \prec \beta}}{x_0=0})(\bdy b) \\
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    22
		 & = \restrict{\phi_\beta}{x_0=0}(\bdy b) + \restrict{\phi_\eset}{x_0=0}(\bdy b) - \restrict{\phi_\beta}{x_0=0}(\bdy b) \\
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    23
		 & = \restrict{\phi_\eset}{x_0=0}(\bdy b) \\
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    24
		 & = s(\bdy b)
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    25
\end{align*}
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    26
Next, we compute the compositions $s \circ i$ and $i \circ s$. If we start with a small $1$-blob diagram $b$, first include it up to the full blob complex then apply $s$, we get exactly back to $b$, at least assuming we adopt the convention that for any ball $\beta$ which is already small, we choose the families of homeomorphisms $\phi_\beta$ and $\phi_{\eset \prec \beta}$ to always be the identity. In the other direction, $i \circ s$, we will need to construct a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ for $*=0$ or $1$. This is defined by $h(b) = \phi_\eset(b)$ when $b$ is a $0$-blob (here $\phi_\eset$ is a one parameter family of homeomorphisms, so this is a $1$-blob), and $h(b) = \phi_\beta(b) + \phi_{\eset \prec \beta}(\bdy b)$ when $b$ is a $1$-blob (here $\beta$ is the ball in $b$, and the first term is the action of a one parameter family of homeomorphisms on a $1$-blob, and the second term is the action of a two parameter family of homeomorphisms on a $0$-blob, so both are $2$-blobs).
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    27
\begin{align*}
224
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    28
(\bdy h+h \bdy)(b) & = \bdy (\phi_{\beta}(b) + \phi_{\eset \prec \beta}{\bdy b}) + \phi_\eset(\bdy b)  \\
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    29
	& =  \restrict{\phi_\beta}{x_0=0}(b) - \restrict{\phi_\beta}{x_1=0}(b) - \phi_\beta(\bdy b) + (\bdy \phi_{\eset \prec \beta})(\bdy b) + \phi_\eset(\bdy b) \\
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    30
	& =  \restrict{\phi_\beta}{x_0=0}(b) - b - \phi_\beta(\bdy b) + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) -  \phi_\eset(\bdy b) + \phi_\beta(\bdy b) + \phi_\eset(\bdy b) \\
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    31
	& = \restrict{\phi_\beta}{x_0=0}(b) - b + \restrict{\phi_{\eset \prec \beta}}{x_0=0}(\bdy b) \\
9faf1f7fad3e fixing signs in small blobs lemma
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 222
diff changeset
    32
	& = (i \circ s - \id)(b)
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    33
\end{align*}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    34
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    35
We now describe the general case. For a $k$-blob diagram $b \in \bc_k(M)$, denote by $b_\cS$ for $\cS \subset \{0, \ldots, k-1\}$ the blob diagram obtained by erasing the corresponding blobs. In particular, $b_\eset = b$, $b_{\{0,\ldots,k-1\}} \in \bc_0(M)$, and $d b_\cS = \sum_{i \notin \cS} \pm  b_{\cS \cup \{i\}}$.
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    36
Similarly, for a disjoint embedding of $k$ balls $\beta$ (that is, a blob diagram but without the labels on regions), $\beta_\cS$ denotes the result of erasing a subset of blobs. We'll write $\beta' \prec \beta$ if $\beta' = \beta_\cS$ for some $\cS$. Finally, for finite sequences, we'll write $i \prec i'$ if $i$ is subsequence of $i'$, and $i \prec_1 i$ if the lengths differ by exactly 1.
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    37
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    38
For a $2$-blob $b$, with balls $\beta$, $s$ is the sum of $5$ terms. Again, there is a term that makes $\beta$ small, while the others `get the boundary right'. It may be useful to look at Figure \ref{fig:erectly-a-tent-badly} to help understand the arrangement.
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    39
\begin{figure}[!ht]
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    40
\todo{}
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    41
\caption{``Erecting a tent badly.'' We know where we want to send a simplex, and each of the iterated boundary components. However, these do not agree, and we need to stitch the pieces together. Note that these diagrams don't exactly match the situation in the text: a $k$-simplex has $k+1$ boundary components, while a $k$-blob has $k$ boundary terms.}
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    42
\end{figure}
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    43
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    44
Next, we'll choose a `shrinking system' for $\cU$, namely for each increasing sequence of blob configurations
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    45
$\beta_0 \prec \beta_1 \prec \cdots \prec \beta_m$, an $m+1$ parameter family of diffeomorphisms
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    46
$\phi_{\beta_0 \prec \cdots \prec \beta_m} : \Delta^{m+1} \to \Diff{M}$, such that
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    47
\begin{itemize}
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    48
\item for any $x$ with $x_0 = 0$, $\phi_{\beta_0 \prec \cdots \prec \beta_m}(x)(\beta_m)$ is subordinate to $\cU$, and
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    49
\item for each $i = 1, \ldots, m$,
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    50
\begin{align*}
225
32a76e8886d1 minor tweaks on small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 224
diff changeset
    51
\phi_{\beta_0 \prec \cdots \prec \beta_m}&(x_0, \ldots, x_{i-1},0,x_{i+1},\ldots,x_m) = \\ &\phi_{\beta_0 \prec \cdots \prec \beta_{i-1} \prec \beta_{i+1} \prec \cdots \prec \beta_m}(x_0,\ldots, x_{i-1},x_{i+1},\ldots,x_m).
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    52
\end{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    53
\end{itemize}
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    54
It's not immediately obvious that it's possible to make such choices, but it follows readily from the following Lemma.
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    55
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    56
When $\beta$ is a collection of disjoint embedded balls in $M$, we say that a homeomorphism of $M$ `makes $\beta$ small' if the image of each ball in $\beta$ under the homeomorphism is contained in some open set of $\cU$.
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    57
222
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    58
\begin{lem}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    59
\label{lem:extend-small-homeomorphisms}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    60
Fix a collection of disjoint embedded balls $\beta$ in $M$. Suppose we have a map $f :  X \to \Homeo(M)$ on some compact $X$ such that for each $x \in \bdy X$, $f(x)$ makes $\beta$ small. Then we can extend $f$ to a map $\tilde{f} : X \times [0,1] \to \Homeo(M)$ so that $\tilde{f}(x,0) = f(x)$ and for every $x \in \bdy X \times [0,1] \cup X \times \{1\}$, $\tilde{f}(x)$ makes $\beta$ small.
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    61
\end{lem}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    62
\begin{proof}
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    63
Fix a metric on $M$, and pick $\epsilon > 0$ so every $\epsilon$ ball in $M$ is contained in some open set of $\cU$. First construct a family of homeomorphisms $g_s : M \to M$, $s \in [1,\infty)$ so $g_1$ is the identity, and $g_s(\beta_i) \subset \beta_i$ and $\rad g_s(\beta_i) \leq \frac{1}{s} \rad \beta_i$ for each ball $\beta_i$. 
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    64
There is some $K$ which uniformly bounds the expansion factors of all the homeomorphisms $f(x)$, that is $d(f(x)(a), f(x)(b)) < K d(a,b)$ for all $x \in X, a,b \in M$. Write $S=\epsilon^{-1} K \max_i \{\rad \beta_i\}$ (note that is $S<1$, we can just take $S=1$, as already $f(x)$ makes $\beta$ small for all $x$). Now define $\tilde{f}(t, x) = f(x) \compose g_{(S-1)t+1}$.
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    65
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    66
If $x \in \bdy X$, then $g_{(S-1)t+1}(\beta_i) \subset \beta_i$, and by hypothesis $f(x)$ makes $\beta_i$ small, so $\tilde{f}(t, x)$ makes $\beta$ small for all $t \in [0,1]$. Alternatively, $\rad g_S(\beta_i) \leq \frac{1}{S} \rad \beta_i \leq \frac{\epsilon}{K}$, so $\rad \tilde{f}(1,x)(\beta_i) \leq \epsilon$, and so $\tilde{f}(1,x)$ makes $\beta$ small for all $x \in X$.
217b6a870532 committing changes from loon lake - mostly small blobs
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 173
diff changeset
    67
\end{proof}
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    68
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    69
We'll need a stronger version of Property \ref{property:evaluation}; while the evaluation map $ev: \CD{M} \tensor \bc_*(M) \to \bc_*(M)$ is not unique, it has an up-to-homotopy representative (satisfying the usual conditions) which restricts to become a chain map $ev: \CD{M} \tensor \bc^{\cU}_*(M) \to \bc^{\cU}_*(M)$. The proof is straightforward: when deforming the family of diffeomorphisms to shrink its supports to a union of open sets, do so such that those open sets are subordinate to the cover.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    70
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    71
Now define a map $s: \bc_*(M) \to \bc^{\cU}_*(M)$, and then a homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ so that $dh+hd=i\circ s$. The map $s: \bc_0(M) \to \bc^{\cU}_0(M)$ is just the identity; blob diagrams without blobs are automatically compatible with any cover. Given a blob diagram $b$, we'll abuse notation and write $\phi_b$ to mean $\phi_\beta$ for the blob configuration $\beta$ underlying $b$. We have
82
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    72
$$s(b) = \sum_{i} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i)$$
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    73
where the sum is over sequences $i=(i_1,\ldots,i_m)$ in $\{1,\ldots,k\}$, with $0\leq m < k$, $i(b)$ denotes the increasing sequence of blob configurations
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    74
$$\beta_{(i_1,\ldots,i_m)} \prec \beta_{(i_2,\ldots,i_m)} \prec \cdots \prec \beta_{()},$$
82
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    75
and, as usual, $i(b)$ denotes $b$ with blobs $i_1, \ldots i_m$ erased. We'll also write
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    76
$$s(b) = \sum_{m=0}^{k-1} \sum_{\norm{i}=m} ev(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor b_i),$$
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    77
arranging the sum according to the length $\norm{i}$ of $i$.
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    78
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    79
82
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    80
We need to check that $s$ is a chain map, and that the image of $s$ in fact lies in $\bc^{\cU}_*(M)$. \todo{} Calculate
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    81
\begin{align*}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    82
\bdy(s(b)) & = \sum_{m=0}^{k-1} \sum_{\norm{i}=m} \ev\left(\bdy(\restrict{\phi_{i(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \bdy b_i\right) \\
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    83
                & = \sum_{m=0}^{k-1} \sum_{\norm{i}=m} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0})\tensor b_i\right) + (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0}\tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \\
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    84
\intertext{and telescoping the sum}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    85
		& = \sum_{m=0}^{k-2} \left(\sum_{\norm{i}=m}  (-1)^m \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \right) + \left(\sum_{\norm{i}=m+1} \ev\left(\sum_{i' \prec_1 i} \pm \restrict{\phi_{i'(b)}}{x_0 = 0} \tensor b_i\right) \right) + \\
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    86
		& \qquad + (-1)^{k-1} \sum_{\norm{i}=k-1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right) \\
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    87
		& = (-1)^{k-1} \sum_{\norm{i}=k-1} \ev\left(\restrict{\phi_{i(b)}}{x_0 = 0} \tensor \sum_{i \prec_1 i'} \pm b_{i'}\right)
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents: 81
diff changeset
    88
\end{align*}
81
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    89
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    90
Next, we define the homotopy $h:\bc_*(M) \to \bc_{*+1}(M)$ by
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    91
$$h(b) = \sum_{i} ev(\phi_{i(b)}, b_i).$$
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    92
\todo{and check that it's the right one...}
scott@6e1638ff-ae45-0410-89bd-df963105f760
parents:
diff changeset
    93
\end{proof}